精英家教网 > 高中数学 > 题目详情
11.已知数列{an}满足a1=1,an=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$(n≥2,n∈N*),若ak=2017,则k=2017.

分析 由an=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$(n≥2,n∈N*),an+1=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$+$\frac{1}{n}$an,(n≥2,n∈N*),两式相减整理得:$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,累乘即可求得an=n,即可求得k的值.

解答 解:根据题意得,an=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$(n≥2,n∈N*),
an+1=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$+$\frac{1}{n}$an,(n≥2,n∈N*),
∴an+1=an+$\frac{1}{n}$an
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,
an=2×$\frac{3}{2}$×…×$\frac{n}{n-1}$=n,(n≥2,n∈N*),
∴an=n,
由ak=2017,则k=2017,
故答案为:2017.

点评 本题考查数列的递推公式,考查数列通项公式的求法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知f(x)是R上的可导函数,其导函数为f'(x),若对任意实数x,都有f(x)>f'(x),且f(x)-1为奇函数,则不等式f(x)<ex的解集为(  )
A.(-∞,0)B.(-∞,e4C.(e4,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点M的直角坐标是$(-\sqrt{3},-1)$,则点M的极坐标为(  )
A.$(2,\frac{5π}{6})$B.$(2,\frac{7π}{6})$C.$(2,\frac{11π}{6})$D.$(2,\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形,且侧棱与底面垂直的棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM-DCP与刍童的组合体中AB=AD,A1B1=A1D1.棱台体积公式:V=$\frac{1}{3}$(S′+$\sqrt{S′S}$+S)h,其中S′,S分别为棱台上、下底面面积,h为棱台高.
(Ⅰ)证明:直线BD⊥平面MAC;
(Ⅱ)若AB=1,A1D1=2,MA=$\sqrt{3}$,三棱锥A-A1B1D1的体积V=$\frac{2\sqrt{3}}{3}$,求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知$sinα=\frac{3}{5}$,$cosβ=\frac{4}{5}$,其中$α∈(\frac{π}{2},π)$,$β∈(0,\frac{π}{2})$,求cos(α+β);
(2)已知$cosα=\frac{1}{7}$,$cos(α-β)=\frac{13}{14}$,且$0<β<α<\frac{π}{2}$,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若复数$\frac{2+ai}{1-i}({a∈R})$是纯虚数(i是虚数单位),则复数z=a+(a-3)i在复平面内对应的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为(  )
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01
A.05B.09C.07D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求倾斜角为直线y=-x+1的倾斜角的$\frac{1}{3}$,且分别满足下列条件的直线方程:
(1)经过点(-4,1);
(2)在y轴上的截距为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在数列{an}中,a1=1,并且对于任意n∈N*,都有${a_{n+1}}=\frac{a_n}{{2{a_n}+1}}$.
(1)证明数列$\left\{{\frac{1}{a_n}}\right\}$为等差数列,并求{an}的通项公式;
(2)设数列bn=an.an+1,求数列{bn}的前n项和为Tn

查看答案和解析>>

同步练习册答案