分析 (1)由${a_{n+1}}=\frac{a_n}{{2{a_n}+1}}$,两边取倒数,转化为等差数列,即可得出.
(2)利用裂项求和方法即可得出.
解答 解:(1)$\frac{1}{a_1}=1$,∵${a_{n+1}}=\frac{a_n}{{2{a_n}+1}}$,∴$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=2$,
∴数列$\left\{{\frac{1}{a_n}}\right\}$是首项为1,公差为2的等差数列,
∴$\frac{1}{a_n}=2n-1$,从而an=2n-1.
(2)∵${a_n}{a_{n+1}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,
∴Tn=a1a2+a2a3+…+anan+1=$\frac{1}{2}[{({1-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+…+({\frac{1}{2n-1}-\frac{1}{2n+1}})}]=\frac{n}{2n+1}$.
点评 本题考查了数列递推关系、等差数列的通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{2π}{3}$ | $\frac{8π}{3}$ | |||
| Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com