精英家教网 > 高中数学 > 题目详情
1.在数列{an}中,a1=1,并且对于任意n∈N*,都有${a_{n+1}}=\frac{a_n}{{2{a_n}+1}}$.
(1)证明数列$\left\{{\frac{1}{a_n}}\right\}$为等差数列,并求{an}的通项公式;
(2)设数列bn=an.an+1,求数列{bn}的前n项和为Tn

分析 (1)由${a_{n+1}}=\frac{a_n}{{2{a_n}+1}}$,两边取倒数,转化为等差数列,即可得出.
(2)利用裂项求和方法即可得出.

解答 解:(1)$\frac{1}{a_1}=1$,∵${a_{n+1}}=\frac{a_n}{{2{a_n}+1}}$,∴$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=2$,
∴数列$\left\{{\frac{1}{a_n}}\right\}$是首项为1,公差为2的等差数列,
∴$\frac{1}{a_n}=2n-1$,从而an=2n-1.
(2)∵${a_n}{a_{n+1}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,
∴Tn=a1a2+a2a3+…+anan+1=$\frac{1}{2}[{({1-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+…+({\frac{1}{2n-1}-\frac{1}{2n+1}})}]=\frac{n}{2n+1}$.

点评 本题考查了数列递推关系、等差数列的通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足a1=1,an=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$(n≥2,n∈N*),若ak=2017,则k=2017.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复数$z=\frac{2}{1-i}$,则z-|z|对应的点位于第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{2π}{3}$$\frac{8π}{3}$
Asin(ωx+φ)030-30
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)令g(x)=f (x+$\frac{π}{3}$)-$\frac{1}{2}$,当x∈[-π,π]时,恒有不等式g(x)-a-3<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某同学在研究性学习中,关于三角形与三角函数知识的应用(约定三内角A、B、C所对的边分别是a,b,c)得出如下一些结论:
(1)若△ABC是钝角三角形,则tanA+tanB+tanC>0;
(2)若△ABC是锐角三角形,则cosA+cosB>sinA+sinB;
(3)在三角形△ABC中,若A<B,则cos(sinA)<cos(tanB)
(4)在△ABC中,若$sinB=\frac{2}{5},tanC=\frac{3}{4}$,则A>C>B
其中错误命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.cos600° 等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算下列式子:
(1)(-2-4i)-(-2+i)+(1+7i);
(2)(1+i)(2+i)(3+i);
(3)$\frac{3+i}{2+i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$x∈({0,\frac{π}{2}})$,p:sinx<x,q:sinx<x2,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.甲、乙、丙三位同学同时参加M项体育比赛,每项比赛第一名、第二名、第三名得分分别为p1,p2,p3(p1>p2>p3,p1,p2,p3∈N*,比赛没有并列名次),比赛结果甲得22分,乙、丙都得9分,且乙有一项得第一名,则M的值为2,3,4,5.

查看答案和解析>>

同步练习册答案