精英家教网 > 高中数学 > 题目详情

【题目】已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直线y=0,x=a(0<a≤1)和曲线y=x3围成的曲边三角形的平面区域,若向区域Ω上随机投一点P,点P落在区域A内的概率是 ,则a的值为( )
A.
B.
C.
D.

【答案】D
【解析】解:根据题意,区域Ω即边长为1的正方形的面积为1×1=1,

区域A即曲边三角形的面积为∫0ax3dx= x4|0a= a4

若向区域Ω上随机投一点P,点P落在区域A内的概率是

则有 =

解可得,a=

所以答案是:D.

【考点精析】利用几何概型对题目进行判断即可得到答案,需要熟知几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场经销一批进价为每件30元的商品在市场试销中发现此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:

x

30

40

45

50

y

60

30

15

0

在所给的坐标图纸中,根据表中提供的数据,描出实数对(xy)的对应点,并确定yx的一个函数关系式;

(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的定义域;

(2)判断函数的奇偶性,并说明理由;

(3)若函数,求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定义域内有两个不同的极值点.
(Ⅰ)求a的取值范围;
(Ⅱ)设两个极值点分别为x1 , x2 , 证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在正方体ABCD-A1B1C1D1EFPQMN分别是棱ABADDD1BB1A1B1A1D1的中点.求证

(1)直线BC1∥平面EFPQ.

(2)直线AC1⊥平面PQMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列不等式:1+ + >1,1+ + +…+ ,1+ + +…+ >2…,则按此规律可猜想第n个不等式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为F(1,0),且点(﹣1, )在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得 恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ ,(a>0)
(1)当a=2时,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在区间[1,+∞)上单调递增,求a的取值范围;
(3)求函数f(x)在区间[1,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)

(1)分别将AB两种产品的利润表示为投资的函数关系式;

(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

同步练习册答案