分析 由已知可知,ax2-bx-1=0的两根为-$\frac{1}{2}$,-$\frac{1}{3}$;根据一元二次方程根与系数的关系可求a,b,进一步解不等式可得.
解答 解:∵不等式 ax2-bx-1≥0的解集是[-$\frac{1}{2}$,-$\frac{1}{3}$],
∴-$\frac{1}{2}$,-$\frac{1}{3}$是方程 ax2-bx-1=0的两个实数根
∴-$\frac{1}{2}$-$\frac{1}{3}$=$\frac{b}{a}$,-$\frac{1}{2}$×(-$\frac{1}{3}$)=-$\frac{1}{a}$可得a=-6,b=5,
∴ax2-bx-1<0为x2-5x+6<0,
解得2<x<3,
∴解集为(2,3)
点评 本题考查了3个二次之间的关系以及一元二次方程根与系数的关系,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 关于点($\frac{π}{4}$,0)对称 | B. | 关于直线x=$\frac{π}{8}$对称 | ||
| C. | 关于点($\frac{π}{8}$,0)对称 | D. | 关于直线x=$\frac{π}{4}$对称 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com