精英家教网 > 高中数学 > 题目详情
16.圆x2+y2=1上的点到3x+4y+25=0的最短距离是(  )
A.1B.5C.4D.6

分析 求出点到直线的距离,结合半径之间的关系进行求解即可.

解答 解:圆心到直线的距离d=$\frac{|25|}{\sqrt{{3}^{2}+{4}^{2}}}=\frac{25}{5}=5$,圆的半径为1,
则圆x2+y2=1上的点到3x+4y+25=0的最短距离是5-1=4,
故选:C.

点评 本题主要考查直线与圆的位置关系的应用,求出点到直线的距离是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知直线l⊥平面α,直线m?平面β,则下列四个命题中,正确的命题是(  )
A.若α⊥β,则l∥mB.若α⊥β,则l⊥mC.若l⊥m,则α∥βD.若l∥m,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.正项数列{an}满足an2+3an=6Sn+10,则an=3n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点P在曲线C:y=$\sqrt{3}$cosx+2015上移动,若曲线C在P处的切线的倾斜角为α,则α的取值范围是(  )
A.[0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π)B.[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π)C.[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π]D.[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.$\underset{lim}{n→∞}$$\frac{{1}^{p}{+2}^{p}{+3}^{p}+…{+n}^{p}}{{n}^{p+1}}$(p>0)可表示成定积分(  )
A.${∫}_{0}^{1}$$\frac{1}{x}$dxB.${∫}_{0}^{1}$xpdxC.${∫}_{0}^{1}$($\frac{1}{x}$)pdxD.${∫}_{0}^{1}$($\frac{x}{n}$)pdx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过抛物线上的点(-1,2)作抛物线y=x2+1的切线,求此切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.火车紧急刹车的速度v(t)=10-t+$\frac{108}{t+2}$m/s,则刹车后行驶的距离约为344.1m(精确到0.1m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{OA}=(-1+m,2),\overrightarrow{OB}=(3,m)$,若$\overrightarrow{OA}$平行于$\overrightarrow{OB}$,则m的值为(  )
A.2或-3B.3或-2C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=log32,b=20.3,c=30.4,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案