【题目】如图,在三棱柱
中,
是等边三角形,
平面
是
的中点,
是
的中点.
![]()
(1)求证:
平面
;
(2)求证:平面
平面
;
(3)若
,求三棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】设椭圆
的右顶点为
,上顶点为
.已知椭圆的离心率为
,
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
:
与椭圆交于
,
两点,且点
在第二象限.
与
延长线交于点
,若
的面积是
面积的3倍,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在
内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:
![]()
(1)算出第三组
的频数.并补全频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系下,方程
的图形为如图所示的“幸运四叶草”,又称为玫瑰线.
![]()
(1)当玫瑰线的
时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;
(2)求曲线
上的点M与玫瑰线上的点N距离的最小值及取得最小值时的点M、N的极坐标(不必写详细解题过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为
,点A的坐标为
,且
.
(I)求椭圆的方程;
(II)设直线l:
与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若
(O为原点) ,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆
上任意一点到其两个焦点
,
的距离之和等于
,焦距为2c,圆
,
,
是椭圆的左、右顶点,AB是圆O的任意一条直径,四边形
面积的最大值为
.
![]()
(1)求椭圆C的方程;
(2)如图,若直线
与圆O相切,且与椭圆相交于M,N两点,直线
与
平行且与椭圆相切于P(O,P两点位于
的同侧),求直线
,
距离d的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com