精英家教网 > 高中数学 > 题目详情
设函数f(x)=
x2+1
,求证:函数f(x)在区间[0,+∞)上是单调增函数.
分析:利用函数单调性的定义证明该函数的单调性是解决本题的关键.任取在区间[0,+∞)上两个自变量,比较相应的函数值大小关系,得出结论.
解答:证明:?x1,x2∈[0,+∞),且x1<x2
则f(x1)-f(x2)=
x
2
1
+1
-
x
2
2
+1
=
(
x
2
1
+1)-(
x
2
2
+1)
x
2
1
+1
+
x
2
2
+1
=
(x1+x2)
(x
 
1
-
x
 
2
)
x
2
1
+1
+
x
2
2
+1
,分母大于零,
由于0<x1<x2,故x1+x2>0,x1-x2<0,故分子小于零,
因此f(x1)-f(x2)<0,即f(x1)<f(x2).
因此函数f(x)在区间[0,+∞)上是单调增函数.
点评:本题考查函数单调性的证明方法,考查函数单调性的定义,考查作差法比较大小等知识,考查学生的等价转化思想,分子有理化的方法,属于基本题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当p1,p2,…,pn均为正数时,称
n
p1+p2+…+pn
为p1,p2,…,pn的“均倒数”.已知数列{an}的各项均为正数,且其前n项的“均倒数”为
1
2n+1

(1)求数列{an}的通项公式;
(2)设cn=
an
2n+1
(n∈N*),试比较cn+1与cn的大小;
(3)设函数f(x)=-x2+4x-
an
2n+1
,是否存在最大的实数λ,使当x≤λ时,对于一切正整数n,都有f(x)≤0恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,(x<0)
-x+3,(x≥0)
,且f(-4)=f(0),f(-2)=-1.
(1)求函数f(x)的解析式; 
(2)画出函数f(x)的图象,并指出函数f(x)的单调区间.
(3)若方程f(x)=k有两个不等的实数根,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C所对边长分别是a,b,c,设函数f(x)=x2+bx-
1
4
为偶函数,且f(cos
B
2
)=0

(1)求角B的大小;
(2)若△ABC的面积为
3
4
,其外接圆的半径为
2
3
3
,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,-4≤x<0
-x+3,0≤x≤4
,且f(-4)=f(0),f(-2)=-1.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-x+n
x2+x+1
(x∈R,x≠
n-1
2
,x∈N*)
,f(x)的最小值为an,最大值为bn,记cn=(1-an)(1-bn
则数列{cn}是
常数
常数
数列.(填等比、等差、常数或其他没有规律)

查看答案和解析>>

同步练习册答案