精英家教网 > 高中数学 > 题目详情
18.某车间将10名技工平均分为甲,乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如表:
每组员工编号12345
甲组a579b
乙组56789
已知甲组技工在单位时间内完成合格零件的平均数与方差分别为7与5.2,且a<b
(1)求a,b的值,并直接指出哪一组技工的技术水平的稳定性更好;
(2)质检部门从该车间甲,乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.

分析 (1)由表中数据我们易求出两组数据的平均数,代入方差公式后,即可求出a,b的值,再比较哪一组技工的技术水平的稳定性更好.
(2)要计算该车间“质量合格”的概率,我们要先求出从甲、乙两组中各抽取1名技工完成合格零件个数的基本事件总个数,再求出该车间“质量合格”包含的基本事件个数,代入古典概型概率公式,即可求出答案.

解答 解:(1)由甲组技工在单位时间内完成合格零件的平均数与方差分别为7与5.2,得$\left\{\begin{array}{l}\frac{a+5+7+9+b}{5}=7\\ \frac{{{{(a-7)}^2}+{{(5-7)}^2}+{{(7-7)}^2}+{{(9-7)}^2}+{{(b-7)}^2}}}{5}=5.2\end{array}\right.$…(2分)
即$\left\{\begin{array}{l}a+b=14\\{(a-7)^2}+{(b-7)^2}=18\end{array}\right.$,解得$\left\{\begin{array}{l}a=4\\ b=10\end{array}\right.或\left\{\begin{array}{l}a=10\\ b=4\end{array}\right.$
又a<b,
故a的值为4,b的值为10,…(5分)
且乙组技工的技术水平的稳定性更好.…(7分)
(2)设事件 A表示:该车间“质量合格”,则从甲、乙两组中各抽取1名技工完成合格零件个数的基本事件为(4,5),(4,6),(4,7),(4,8),(4,9),(5,5),(5,6),(5,7),(5,8),(5,9),(7,5),(7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9)共25种.…(9分)
事件 A包含的基本事件为(4,9),(5,8),(5,9),(7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9)共17种.…(10分)
∴${P}({A})=\frac{17}{25}$.即该车间“质量合格”的概率为$\frac{17}{25}$.…(12分)

点评 本题主要考查在实际背景下,将统计与概率相结合,考查了样本的平均数与方差的计算,以及求随机事件的概率,考查了归纳推理、应用数学知识解决实际问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某省去年高三100000名考生英语成绩服从正态公布N(85,225),现随机抽取50名考生的成绩,发现全部介于[30,150]之间,将成绩按如下方式分成6组:第一组[30,50),第二组[50,70),…第6组[130,150],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)估算该50名考生成绩的众数和中位数.
(Ⅱ)求这50名考生成绩在[110,150]内的人中分数在130分以上的人数.
(Ⅲ)从这50名考生成绩在[110,150]的人中任意抽取2人,该2人成绩排名(从高到后)在全省前130名的人数记为X.求X的数学期望
(参考数据:若X~N(u,δ2
则P(u-δ<X≤u+δ)=0.6826
P(u-2δ<X≤u+2δ)=0.9544
P(u-3δ<X≤u+3δ)=0.9974)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,若输出值x∈(16,25),则输入x的值可以是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输出的n的值为5,则输入的T的最大值为(  )
A.108B.76C.61D.49

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,f(0)=$\frac{1}{2}$,则g(x)=2cos(ωx+φ)在区间[0,$\frac{π}{2}$]上的最大值为(  )
A.4B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N).记Sn=a1+a2+…+an.Tn=$\frac{1}{{1+{a_1}}}$+$\frac{1}{{(1+{a_1})(1+{a_2})}}$+…+$\frac{1}{{(1+{a_1})(1+{a_2})…(1+{a_n})}}$.求证:当n∈N*
(Ⅰ)0≤an<an+1<1;
(Ⅱ)Sn>n-2;
(Ⅲ)Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若(x+$\frac{1}{x}$+1)n的展开式中各项的系数之和为81,则分别在区间[0,π]和[0,$\frac{n}{4}$]内任取两个实数x,y,满足y>sinx的概率为(  )
A.1-$\frac{1}{π}$B.1-$\frac{2}{π}$C.1-$\frac{3}{π}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在ABC中,a、b、c分别是角A,B,C的对边,c=2,sin2A+sin2B-sin2C=sinAsinB
(Ⅰ)求角C的取值;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出以下四个命题,其中正确的命题的个数为(  )
①330°角与-1050°角的终边相同
②第二象限角都是钝角
③终边在y轴正半轴上的角不一定是直角
④锐角用集合表示为{x|0°≤x<$\frac{π}{2}$}.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案