精英家教网 > 高中数学 > 题目详情
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10T10.
S10=10a1+d=-
 ∵{an}为等差数列,{bn}为等比数列,∴a2+a4=2a3,b2·b4=b32,
已知a2+a4=b3,b2·b4=a3,∴b3=2a3,a3=b32,
b3=2b32,∵b3≠0,∴b3=,a3=.
a1=1,a3=,知{an}的公差d=-,
S10=10a1+d=-.
b1=1,b3=,知{bn}的公比q=q=-,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

 数列中前n项的和,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数nan与2的等差中项等于Sn与2的等比中项.
(1)写出数列{an}的前3项.
(2)求数列{an}的通项公式(写出推证过程).
(3)令bn=(n∈N*),求 (b1+b2+b3+…+bnn).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn1=3t(t>0,n=2,3,4…).
(1)求证: 数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f()(n=2,3,4…),求数列{bn}的通项bn
(3)求和: b1b2b2b3+b3b4-…+b2n1b2nb2nb2n+1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

据有关资料,1995年我国工业废弃垃圾达到7.4×108吨,占地562.4平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石20吨,设环保部门1996年回收10万吨废旧物资,计划以后每年递增20%的回收量,试问:
(1)2001年回收废旧物资多少吨?
(2)从1996年至2001年可节约开采矿石多少吨(精确到万吨)?
(3)从1996年至2001年可节约多少平方公里土地?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中p>0,p+q>1。对于数列,设它的前n项之和为,且
(1)求数列的通项公式;
(2)证明:(3)证明:点共线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

夏季高山上的温度从脚起,每升高,降低℃,已知山顶处的温度是℃,山脚处的温度为℃,问此山相对于山脚处的高度是多少米.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分) 已知曲线C的横坐标分别为1和,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且).设区间,当时,曲线C上存在点使得xn的值与直线AAn的斜率之半相等.
(1)    证明:是等比数列;
(2)    当对一切恒成立时,求t的取值范围;
(3)    记数列{an}的前n项和为Sn,当时,试比较Snn + 7的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列中,,求

查看答案和解析>>

同步练习册答案