精英家教网 > 高中数学 > 题目详情
已知正实数a,b满足a+2b+2ab=8,则a+2b的最小值是
4
4
分析:设t=a+2b,然后利用基本不等式进行求解即可.
解答:解:设t=a+2b,则t>0,
由a+2b+2ab=8得2ab=8-(a+2b)≤(
a+2b
2
)2

即8-t≤(
t
2
)2
,整理得t2+4t-32≥0,
解得t≥4或t≤-8(舍去).
即a+2b≥4,
所以a+2b的最小值是4.
故答案为:4.
点评:本题主要考查基本不等式的应用,注意利用a+2b+2ab=8为常数,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正实数a、b满足a+b=1,则
ab
4a+9b
的最大值为(  )
A、
1
23
B、
1
24
C、
1
25
D、
1
26

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•三明模拟)已知正实数a,b满足不等式ab+1<a+b,则函数f(x)=loga(x+b)的图象可能为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)已知正实数a,b满足a+2b=1,则a2+4b2+
1
ab
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区二模)已知正实数a,b满足
2
a
+
1
b
=1
,则a+2b的最小值为
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数a,b满足2a+b=1,则4a2+b2+
1
ab
的最小值为
17
2
17
2

查看答案和解析>>

同步练习册答案