精英家教网 > 高中数学 > 题目详情
2.已知复数i+$\frac{a}{1+i}$(a∈R)为实数,则a=2.

分析 利用复数代数形式的乘除运算化简,再由虚部为0求解.

解答 解:∵i+$\frac{a}{1+i}$=i+$\frac{a(1-i)}{(1+i)(1-i)}$=i+$\frac{a}{2}-\frac{ai}{2}$=$\frac{a}{2}+(1-\frac{a}{2})i$为实数,
∴1-$\frac{a}{2}=0$,得a=2.
故答案为:2.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若(x2-3x+2)5=${a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+…+{a_{10}}{x^{10}}$
(1)求a2
(2)求a1+a2+a3+…+a10
(3)求$({a_0}+{a_2}+{a_4}+{a_6}+{a_8}{+_{10}}{)^2}$-$({a_1}+{a_3}+{a_5}+{a_7}+{a_9}{)^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.任何事件的概率总是在(0,1]之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,事件发生的频率一般会稳定于概率
D.概率是随机的,在试验前不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)是定义在R上以π为周期的奇函数,且当x∈[-$\frac{π}{2}$,0)时,f(x)=sinx,则f(-$\frac{5π}{3}$)=(  )
A.-$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点P(1,$-\sqrt{3}$),则它的极坐标是(  )
A.$(2,\frac{π}{3})$B.$(2,\frac{4π}{3})$C.$(2,\frac{5π}{3})$D.$(2,\frac{2π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)若($\frac{1}{2}$+2x)n的展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;
(2)(a+x)(a+x)4的展开式中x的奇数次幂项的系数之和为32,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在正方形ABCD中,AD=4,E为DC上一点,且$\overrightarrow{DE}$=3$\overrightarrow{EC}$,F为BC的中点,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x=1是函数$f(x)=({x-2}){e^x}-\frac{k}{2}{x^2}+kx({k>0})$的极小值点,则实数k的取值范围是(0,e).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知二次函数f(x)=ax2-3x+2,不等式f(x)>0的解集为{x|x<1或x>b},则b=2.

查看答案和解析>>

同步练习册答案