Çë×ÐϸÔĶÁÒÔϲÄÁÏ£º
ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£®
ÇóÖ¤£ºÃüÌâ¡°Éèa£¬b¡ÊR
+£¬Èôab£¾1£¬Ôò
f(a)+f(b)£¾f()+f()¡±ÊÇÕæÃüÌ⣮
Ö¤Ã÷ ÒòΪa£¬b¡ÊR
+£¬ÓÉab£¾1µÃa£¾
£¾0£®
ÓÖÒòΪf£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£¬
ÓÚÊÇÓÐ
f(a)£¾f()£® ¢Ù
ͬÀíÓÐ
f(b)£¾f()£® ¢Ú
ÓÉ¢Ù+¢ÚµÃ
f(a)+f(b)£¾f()+f()£®
¹Ê£¬ÃüÌâ¡°Éèa£¬b¡ÊR
+£¬Èôab£¾1£¬Ôò
f(a)+f(b)£¾f()+f()¡±ÊÇÕæÃüÌ⣮
ÇëÕë¶ÔÒÔÉÏÔĶÁ²ÄÁÏÖеÄf£¨x£©£¬½â´ðÒÔÏÂÎÊÌ⣺
£¨1£©ÊÔÓÃÃüÌâµÄµÈ¼ÛÐÔÖ¤Ã÷£º¡°Éèa£¬b¡ÊR
+£¬Èô
f(a)+f(b)£¾f()+f()£¬Ôò£ºab£¾1¡±ÊÇÕæÃüÌ⣻
£¨2£©½â¹ØÓÚxµÄ²»µÈʽf£¨a
x-1£©+f£¨2
x£©£¾f£¨a
1-x£©+f£¨2
-x£©£¨ÆäÖÐa£¾0£©£®