精英家教网 > 高中数学 > 题目详情
2.在△ABC中,角A、B、C所对的边分别为a、b、c.若a=1,$\frac{sinB}{sinC}$=$\frac{1}{2}$+$\frac{cosC}{c}$,则A=$\frac{π}{3}$.

分析 利用两角和的正弦函数以及正弦定理化简求解即可.

解答 解:在△ABC中,角A、B、C所对的边分别为a、b、c.若a=1,$\frac{sinB}{sinC}$=$\frac{1}{2}$+$\frac{cosC}{c}$,
可得$\frac{sin(A+C)}{sinC}=\frac{1}{2}+\frac{acosC}{c}$=$\frac{1}{2}+\frac{sinAcosC}{sinC}$,
即$\frac{sinAcosC+cosAsinC}{sinC}=\frac{1}{2}+\frac{sinAcosC}{sinC}$,
cosA=$\frac{1}{2}$,
∴A=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题考查正弦定理的应用,两角和与差的三角函数的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在正方体ABCD-A1B1C1D1中,P、Q、R分别在棱AB、BB1、CC1上,且PD、QR相交于点O.求证:O、B、C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下列命题:
①$y=cos(x-\frac{π}{4})cos(x+\frac{π}{4})$的图象关于直线x=$\frac{π}{2}$对称;
②y=$\frac{x+3}{x-1}$的图象关于点(-1,1)对称;
③关于x的方程ax2-2x+a=0有且仅有一个实根,则a=±1;
④满足条件AC=$\sqrt{3}$,∠B=60°,AB=1的三角形△ABC有一个.
其中真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知ex+x3+x+1=0,$\frac{1}{{e}^{3y}}$-27y3-3y+1=0,则ex+3y的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:x2≥2x+3;命题q:|1-$\frac{x}{2}$|<1.若p是真命题,q是假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.方程$\sqrt{(x-6)^{2}+{y}^{2}}$-$\sqrt{(x+6)^{2}+{y}^{2}}$=8表示的曲线是$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{20}$=1,(x≤-4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,已知an≥1,a1=1,且an+1-an=$\frac{2}{{a}_{n+1}+{a}_{n}-1}$(n∈N*).
(1)令bn=(an-$\frac{1}{2}$)2,求证:{bn}为等差数列;
(2)令cn=(2an-1)2,Sn=$\frac{1}{{c}_{1}{c}_{2}}$+$\frac{1}{{c}_{2}{c}_{3}}$+…+$\frac{1}{{c}_{n}{c}_{n+1}}$,若Sn<k恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sinα+cosα=$\frac{\sqrt{6}}{2}$,α∈(0,$\frac{π}{4}$),则sin(α-$\frac{π}{3}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆锥的底面半径为r,母线长为l,设计一个求该圆锥体积的算法,并画出程序框图.

查看答案和解析>>

同步练习册答案