精英家教网 > 高中数学 > 题目详情
13.有下列命题:
①$y=cos(x-\frac{π}{4})cos(x+\frac{π}{4})$的图象关于直线x=$\frac{π}{2}$对称;
②y=$\frac{x+3}{x-1}$的图象关于点(-1,1)对称;
③关于x的方程ax2-2x+a=0有且仅有一个实根,则a=±1;
④满足条件AC=$\sqrt{3}$,∠B=60°,AB=1的三角形△ABC有一个.
其中真命题的序号是①④.

分析 化简函数的解析式,结合余弦函数的对称性,可判断①;分析出函数对称中心坐标,可判断②;根据一元一次方程也只有一个实根,可判断③;判断三角形解的个数,可判断④.

解答 解:①$y=cos(x-\frac{π}{4})cos(x+\frac{π}{4})$=$\frac{1}{2}$(cos2x-sin2x)=$\frac{1}{2}$cos2x,
当x=$\frac{π}{2}$时,y取最小值,故函数的图象关于直线x=$\frac{π}{2}$对称,故正确;
②y=$\frac{x+3}{x-1}$=$\frac{4}{x-1}$+1的图象由y=$\frac{4}{x}$的图象向右平移一个单位,再向上平移一个单位得到,故关于点(1,1)对称,故错误;
③关于x的方程ax2-2x+a=0有且仅有一个实根,则a=±1,或a=0,故错误;
④AC=$\sqrt{3}$,∠B=60°,AB=1时,sin∠C=$\frac{1}{2}$且∠C<∠B,此时三角形只有一解,故正确.
故正确的命题有:①④,
故答案为:①④

点评 本题以命题的真假判断与应用为载体,考查了函数的对称性,类一元二次方程根的个数,解三角形等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.m<2是方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1表示双曲线的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的数列{an}的前n项为Sn,满足a2n+1=2sn+n+4,且a2-1,a3,a7恰为等比数列{bn}的前3项.
(1)求数列{an},{bn}的通项公式;
(2)令${c_n}=\frac{{{a_n}-1}}{b_n}$,数列{cn}的前n项和为Tn,且${T_n}>\frac{m-1}{2}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1、F2是椭圆$\frac{x^2}{20}+\frac{y^2}{4}=1$的焦点,弦AB经过F1,则△ABF2的周长为(  )
A.20B.$4+2\sqrt{5}$C.$4\sqrt{5}$D.$8\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的中心在原点,焦点在x轴上,且长轴为8,离心率为$\frac{\sqrt{3}}{2}$,求:
(1)椭圆的标准方程;
(2)求椭圆上的点到直线$x+2y-\sqrt{2}=0$的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{an}的前4项是$\frac{3}{2}$,1,$\frac{7}{10}$,$\frac{9}{17}$,则这个数列的一个通项公式是an=$\frac{2n+1}{{n}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过点P(1,3)的直线L分别与两坐标轴交于A、B两点,若P为AB的中点,则直线L的截距式是$\frac{x}{2}$+$\frac{y}{6}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A、B、C所对的边分别为a、b、c.若a=1,$\frac{sinB}{sinC}$=$\frac{1}{2}$+$\frac{cosC}{c}$,则A=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.三角形ABC中,sinBcosC=1+cosBsinC,三角形ABC的形状为钝角三角形.

查看答案和解析>>

同步练习册答案