精英家教网 > 高中数学 > 题目详情
3.三角形ABC中,sinBcosC=1+cosBsinC,三角形ABC的形状为钝角三角形.

分析 利用两角和与差的三角函数化简求解即可.

解答 解:三角形ABC中,sinBcosC=1+cosBsinC,
可得sin(B-C)=1,
B-C=90°,B为钝角.
三角形ABC的形状为:钝角三角形.
故答案为:钝角三角形.

点评 本题考查三角形的形状的判断,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.有下列命题:
①$y=cos(x-\frac{π}{4})cos(x+\frac{π}{4})$的图象关于直线x=$\frac{π}{2}$对称;
②y=$\frac{x+3}{x-1}$的图象关于点(-1,1)对称;
③关于x的方程ax2-2x+a=0有且仅有一个实根,则a=±1;
④满足条件AC=$\sqrt{3}$,∠B=60°,AB=1的三角形△ABC有一个.
其中真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,已知an≥1,a1=1,且an+1-an=$\frac{2}{{a}_{n+1}+{a}_{n}-1}$(n∈N*).
(1)令bn=(an-$\frac{1}{2}$)2,求证:{bn}为等差数列;
(2)令cn=(2an-1)2,Sn=$\frac{1}{{c}_{1}{c}_{2}}$+$\frac{1}{{c}_{2}{c}_{3}}$+…+$\frac{1}{{c}_{n}{c}_{n+1}}$,若Sn<k恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sinα+cosα=$\frac{\sqrt{6}}{2}$,α∈(0,$\frac{π}{4}$),则sin(α-$\frac{π}{3}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x∈(0,$\frac{π}{2}$),试求y=$\frac{1+2sinxcosx}{2+sinx+cosx}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,若a1=1,且an+2+(-1)nan=1(n∈N*),则数列{an}的前20项和为(  )
A.60B.45C.35D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos2x,g(x)=sinx,h(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$).
(1)判断函数H(x)=f(x+$\frac{π}{4}$)+g(x+$\frac{π}{2}$)的奇偶性,并说明理由;
(2)若函数h(x+$\frac{π}{2}$)和h(x-π)都是奇函数,将满足条件的ω按从小到大的顺序组成一个数列{an},求{an}的通项公式;
(3)求实数a与正整数n,使得F(x)=f(x)+a•g(x)在(0,nπ)内恰有147个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆锥的底面半径为r,母线长为l,设计一个求该圆锥体积的算法,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin(x+$\frac{7}{4}$π)+cos(x-$\frac{3}{4}$π),x∈R
(1)求f(x)的最小正周期和最小值
(2)已知cos(β-α)=$\frac{4}{5}$,cos(β+α)=-$\frac{4}{5}$,0<α<β≤$\frac{π}{2}$,求[f(β)]2的值.

查看答案和解析>>

同步练习册答案