精英家教网 > 高中数学 > 题目详情
1.已知F1、F2是椭圆$\frac{x^2}{20}+\frac{y^2}{4}=1$的焦点,弦AB经过F1,则△ABF2的周长为(  )
A.20B.$4+2\sqrt{5}$C.$4\sqrt{5}$D.$8\sqrt{5}$

分析 由椭圆的方程知,长半轴a=5,利用椭圆的定义知,△ABF2的周长为4a,从而可得答案.

解答 解:∵椭圆的方程为$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1$,
∴a=$2\sqrt{5}$,b=2,又过焦点F1的直线与椭圆交于A,B两点,A,B与椭圆的另一个焦点F2构成△ABF2
则△ABF2的周长l=|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a=4a=8$\sqrt{5}$.
故选:D.

点评 本题考查了椭圆的简单性质,着重考查椭圆定义的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求经过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在正方体ABCD-A1B1C1D1中,P、Q、R分别在棱AB、BB1、CC1上,且PD、QR相交于点O.求证:O、B、C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知sinB=cosAsinC
(1)判断△ABC的形状
(2)若$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,又△ABC的面积等于6.求△ABC的三边之长;
(3)在(2)的条件下,设P是△ABC(含边界)内一点,P到三边AB,BC,CA的距离分别为d1,d2,d3,求d1+d2+d3的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线y=k(x-3)+4和曲线y=$\sqrt{9-{x^2}}$有且只有一个交点,则实数k的取值范围为$\left\{{\frac{7}{24}}\right\}∪({\frac{2}{3},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若直线y=kx+1与椭圆$\frac{x^2}{2010}+\frac{y^2}{m}=1$恒有公共点,则m的取值范围是:m≥1,且m≠2010.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下列命题:
①$y=cos(x-\frac{π}{4})cos(x+\frac{π}{4})$的图象关于直线x=$\frac{π}{2}$对称;
②y=$\frac{x+3}{x-1}$的图象关于点(-1,1)对称;
③关于x的方程ax2-2x+a=0有且仅有一个实根,则a=±1;
④满足条件AC=$\sqrt{3}$,∠B=60°,AB=1的三角形△ABC有一个.
其中真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知ex+x3+x+1=0,$\frac{1}{{e}^{3y}}$-27y3-3y+1=0,则ex+3y的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sinα+cosα=$\frac{\sqrt{6}}{2}$,α∈(0,$\frac{π}{4}$),则sin(α-$\frac{π}{3}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案