精英家教网 > 高中数学 > 题目详情
7.方程$\sqrt{(x-6)^{2}+{y}^{2}}$-$\sqrt{(x+6)^{2}+{y}^{2}}$=8表示的曲线是$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{20}$=1,(x≤-4).

分析 由双曲线定义得方程$\sqrt{(x-6)^{2}+{y}^{2}}$-$\sqrt{(x+6)^{2}+{y}^{2}}$=8表示的曲线是以F1(-6,0),F2(6,0)为焦点,以8为实轴的双曲线的左支.

解答 解:方程$\sqrt{(x-6)^{2}+{y}^{2}}$-$\sqrt{(x+6)^{2}+{y}^{2}}$=8表示平面上到两定点F2(6,0),F1(-6,0)的距离之差为8的点的集合,
∵|F1F2|=12>8,
∴方程$\sqrt{(x-6)^{2}+{y}^{2}}$-$\sqrt{(x+6)^{2}+{y}^{2}}$=8表示的曲线是以F1(-6,0),F2(6,0)为焦点,以8为实轴的双曲线的左支,
∴a=4,c=6,b2=36-16=20,
∴双曲线方程为:$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{20}$=1,(x≤-4).
故答案为:$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{20}$=1,(x≤-4).

点评 本题考查双曲线方程的求法,是基础题,解题时要认真审题,注意双曲线定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.一个正三棱锥的外接球的半径为1,若球心在底面上,则该正三棱锥的体积是(  )
A.$\frac{3\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{an}的前4项是$\frac{3}{2}$,1,$\frac{7}{10}$,$\frac{9}{17}$,则这个数列的一个通项公式是an=$\frac{2n+1}{{n}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log2(2x-1),F(x)=f(x+1)-f(1-x).
(Ⅰ)求F(x)的定义域;
(Ⅱ)判断F(x)的奇偶性;
(Ⅲ)解方程F(x)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A、B、C所对的边分别为a、b、c.若a=1,$\frac{sinB}{sinC}$=$\frac{1}{2}$+$\frac{cosC}{c}$,则A=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a=2-sin1,b=-$\frac{π}{6}$+sin$\frac{π}{12}$,c=-$\frac{π}{4}$+sin$\frac{π}{8}$,则(  )
A.b>c>aB.a>b>cC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线l:y=2x+1与抛物线y2=2px(p>0)交于A、B两点,若|AB|=$\sqrt{15}$,则抛物线的焦点到直线l的距离为$\frac{7\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是三内角A,B,C所对的三边,若a是b与c的等比中项,求f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}满足a1+2a2+3a3+…+nan=(n-1)2n+1,n∈N*
(1)求a3的值;
(2)若对n∈N*,bn=$\frac{1}{{a}_{n}}$,求数列{bn}的通项公式bn和前n项和Tn
(3)令c1=b1,cn=$\frac{{T}_{n-1}}{n}$+(1+$\frac{1}{2}$+$\frac{1}{3}$…+$\frac{1}{n}$)bn(n≥2)证明:数列{cn}的前n项和Sn满足Sn<2+2lnn.

查看答案和解析>>

同步练习册答案