精英家教网 > 高中数学 > 题目详情
14.“渐升数”是指每个数字比它左边的数字大的正整数(如1458),若把四位“渐升数”按从小到大的顺序排列,则第22个数为1345.

分析 根据题意,“渐升数”中不能有0,则在其他9个数字中任取4个,每种取法对应一个“渐升数”,再确定1在首位、2在百位;3在百位,4在十位,5在十位“渐升数”的个数,即可得出结论.

解答 解:根据题意,“渐升数”中不能有0,则在其他9个数字中任取4个,每种取法对应一个“渐升数”.
对于这些“渐升数”,1在首位、2在百位的有${C}_{7}^{2}$=21个;
∴第22个“渐升数”为1345,
故答案为:1345.

点评 本题考查排列、组合的应用,关键是理解“渐升数”的含义,其次要注意0不能在首位,即“渐升数”中不能有0,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在△ABC中,“sinA+sinB=cosA+cosB”是“C=90°”的充分必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\sqrt{1-2sin(π+4)cos(π+4)}$?等于(  )
A.sin4-cos4B.cos4-sin4C.±sin4-cos4D.sin4+cos4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆x2+y2-2x-1=0关于直线x-y+3=0对称的圆的方程是(  )
A.(x+3)2+(y-4)2=2B.(x-3)2+(y+4)2=2C.${(x+3)^2}+{(y-4)^2}=\frac{1}{2}$D.${(x-3)^2}+{(y+4)^2}=\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.数列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N*),则a2011的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}满足${S_n}=2{n^2}+n-1$,则通项an=$\left\{\begin{array}{l}2,n=1\\ 4n-1,n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设命题p“任意x>0,log3x>log4x”,则非p为(  )
A.存在x>0,log3x>log4B.存在x>0,log3x≤log4
C.任意x>0,log3x≤log4D.任意x>0,log3x=log4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ln(x2+1)+$\frac{1}{x}$,则f′(2)=$\frac{11}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.关于x的方程2x2-3x-2k=0在(-1,1)内有一个实根,求实数k的取值范围.

查看答案和解析>>

同步练习册答案