精英家教网 > 高中数学 > 题目详情
16.在平面直角坐标系xOy中,设直线x-y+m=0(m>0)与圆x2+y2=8交于不同的两点A,B,若圆上存在点C,使得△ABC为等边三角形,则正数m的值为2.

分析 先由圆心角与圆周角的关系得到∠AOB=120°,再利用余弦定理得到BD,最后借助于点到直线的距离公式可解得m即可.

解答 解:根据题意画出图形,连接OA,OB,作OD垂直于AB于D点,
因为△ABC为等边三角形,所以∠AOB=120°,由余弦定理知:AB=2$\sqrt{6}$,
故BD=$\sqrt{6}$,所以OD=$\sqrt{2}$,
所以O(0,0)到直线AB的距离$\frac{|m|}{\sqrt{2}}$=$\sqrt{2}$,解得m=±2,
∵m是正数,
∴m的值为2
故答案为2.

点评 本题考查直线与圆的位置关系,考查余弦定理,考查点到直线的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sinxcosx,x∈R.
(1)若$f({\frac{α}{2}})=\frac{3}{5}$,$α∈({\frac{π}{2},π})$,求$cos({α-\frac{π}{3}})$的值;
(2)求f(x)的递减区间;
(3)求曲线y=f(x)在坐标原点O处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2ax+bx-1-2lnx(a∈R).
(1)当b=0时,讨论函数f(x)的单调区间;
(2)若对?α∈[1,3],?x∈(0,+∞),f(x)≥2bx-3恒成立,求实数b的取值范围;
(3)当x>y>e-1时,求证:exln(y+1)>eyln(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.实数m取什么值时,复平面内表示复数z=(m2-8m+15)+(m2-5m)i的点
(1)z为纯虚数              
(2)位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.△ABC的三个内角A,B,C的对边分别是a,b,c,则:
①若cosBcosC>sinBsinC,则△ABC一定是钝角三角形;
②若acosA=bcosB,则△ABC为等腰三角形;
③$\overrightarrow a=(tanA+tanB,tanC)$,$\overrightarrow b=(1,1)$,若$\overrightarrow a•\overrightarrow b>0$,则△ABC为锐角三角形;
④若O为△ABC的外心,$\overrightarrow{AO}•\overrightarrow{BC}=\frac{1}{2}({b^2}-{c^2})$;
⑤若sin2A+sin2B=sin2C,$且\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow 0$,$则\frac{{{{|{\overrightarrow{OA}}|}^2}+{{|{\overrightarrow{OB}}|}^2}}}{{{{|{\overrightarrow{OC}}|}^2}}}=5$
以上叙述正确的序号是①③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知长方体ABCD-A1B1C1D1,AB=2,AA1=1,直线BD与平面AA1B1B所成的角为30°,AE垂直BD于点E,F为A1B1的中点.
(1)求异面直线AE与BF所成角的余弦值;
(2)求平面BDF与平面AA1B1B所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,设△ABC的内角A,B,C所对边的长分别是a,b,c,A=$\frac{3π}{4}$,c=6,b=3$\sqrt{2}$,点D在BC边上,且AD=BD,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.空间中任意放置的棱长为2的正四面体ABCD,下列命题正确的是①②③④. (写出所有正确命题的编号)
①正四面体ABCD的主视图面积可能是$\sqrt{2}$;
②正四面体ABCD的主视图面积可能是$\frac{2\sqrt{6}}{3}$;
③正四面体ABCD的主视图面积可能是$\sqrt{3}$;
④正四面体ABCD的主视图面积可能是2;
⑤正四面体ABCD的主视图面积可能是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆 $\frac{x^2}{16}+\frac{y^2}{25}=1$的两个焦点为F1,F2,弦 AB过点F2,则△ABF1的周长为(  )
A.10B.12C.16D.20

查看答案和解析>>

同步练习册答案