分析 由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.
解答
解:∵A=$\frac{3π}{4}$,c=6,b=3$\sqrt{3}$,
∴在△ABC中,由余弦定理可得:a2=b2+c2-2b•ccos∠BAC=90.
∴a=3$\sqrt{10}$,
∵在△ABC中,由正弦定理可得:$\frac{b}{sinB}$=$\frac{a}{sin∠BAC}$,
∴sinB=$\frac{\sqrt{10}}{10}$,
∴cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{3\sqrt{10}}{10}$,
∵过点D作AB的垂线DE,垂足为E,由AD=BD,得:cos∠DAE=cosB,
∴Rt△ADE中,AD=$\frac{AE}{cos∠DAE}$=$\frac{3}{cosB}$=$\sqrt{10}$.
AD的长$\sqrt{10}$.
点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基本知识的考查,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com