分析 由AB=BC=CA=2,求得△ABC的外接圆半径为r,再由R2-($\frac{1}{2}$R)2=$\frac{4}{3}$,求得球的半径,再用面积求解.
解答 解:因为AB=BC=CA=2,
所以△ABC的外接圆半径为r=$\frac{2\sqrt{3}}{3}$.
设球半径为R,则R2-($\frac{1}{2}$R)2=$\frac{4}{3}$,
所以R2=$\frac{16}{9}$,
所以S=4πR2=$\frac{64π}{9}$.
故答案为$\frac{64π}{9}$.
点评 本题主要考查球的球面面积,涉及到截面圆圆心与球心的连线垂直于截面,这是求得相关量的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60π | B. | 30π | C. | 20π | D. | 15π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 5 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com