精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=tan(x-$\frac{π}{3}$),一条与x轴平行的直线与函数f(x)的图象相交,则相邻的两个交点之间的距离为π.

分析 利用正切函数的图象与正切函数的周期求解即可.

解答 解:函数f(x)=tan(x-$\frac{π}{3}$),一条与x轴平行的直线与函数f(x)的图象相交,可得函数的图象的相邻两个交点的距离是函数f(x)=tan(x-$\frac{π}{3}$)的周期,可得T=π.
故答案为:π.

点评 本题考查正切函数的周期的应用,正切函数的图象的性质,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.过点M(1,2)的直线l交x轴,y轴于P,Q两点.
(1)若点M是P,Q两点的中点,求直线l的方程;
(2)若原点到直线l的距离为d,求距离d最大时的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.求:
(1)直线BD1面ABCD所成角正切值;
(2)平面PAC与面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}中,a1=$\frac{4}{5}$,an+1=$\left\{\begin{array}{l}2{a_n}\;\;\;\;\;\;(0≤{a_n}≤1)\\ 2{a_n}-2\;(1<{a_n}≤2)\end{array}$,则a2015等于(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x3+ax2-ax+m(a∈R,m∈R).
(Ⅰ)若函数f(x)在[-2,0]上是减函数,求实数a的取值范围;
(Ⅱ)若对任意的a∈[3,6],不等式f(x)≤0在x∈[-2,0]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,则这个几何体的体积是(  )
A.$2\sqrt{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图正方体ABCD-A1B1C1D1外接球O,过点O作一平面,则截面图形不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)同时满足:
①对于定义域上的任意x,恒有f(x)+f(-x)=0
②对于定义域上的任意x1,x2,当x1≠x2时,恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,则称函数f(x)为“理想函数”.
给出下列四个函数中:
①$f(x)=\frac{1}{x}$;
②f(x)=x2; 
③f(x)=-x;
④$f(x)=\left\{{\begin{array}{l}{-{x^2}}&{x≥0}\\{{x^2}}&{x<0}\end{array}}\right.$
能被称为“理想函数”的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆的极坐标方程为ρ=2(cosθ+sinθ),则该圆的圆心极坐标是(  )
A.$({1,\frac{π}{4}})$B.($\sqrt{2}$,$\frac{π}{4}$)C.($\frac{1}{2}$,$\frac{π}{4}$)D.$({2,\frac{π}{4}})$

查看答案和解析>>

同步练习册答案