精英家教网 > 高中数学 > 题目详情
2.圆的极坐标方程为ρ=2(cosθ+sinθ),则该圆的圆心极坐标是(  )
A.$({1,\frac{π}{4}})$B.($\sqrt{2}$,$\frac{π}{4}$)C.($\frac{1}{2}$,$\frac{π}{4}$)D.$({2,\frac{π}{4}})$

分析 由极坐标方程求出圆的直角坐标方程,从而求出该圆的圆心平面直角坐标,由此能求出该圆的圆心极坐标.

解答 解:∵极坐标方程为ρ=2(cosθ+sinθ),
∴ρ2=2ρcosθ+2ρsinθ,
∴x2+y2=2x+2y,
∴x2+y2-2x-2y=0,
∴该圆的圆心平面直角坐标为(1,1),
∴该圆的圆心极坐标为($\sqrt{2}$,$\frac{π}{4}$).
故选:B.

点评 本题考查圆的圆心极坐标的求法,是基础题,解题时要认真审题,注意极坐标方程和直角坐标方程的互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=tan(x-$\frac{π}{3}$),一条与x轴平行的直线与函数f(x)的图象相交,则相邻的两个交点之间的距离为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数$f(x)=\frac{{a{x^2}-b}}{x}$,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,则f(x)的解析式为f(x)=x-$\frac{3}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=log0.5(sin2x+cos2x)单调减区间为(kπ-$\frac{π}{8}$,kπ+$\frac{π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数y=f(x)可导,则$\lim_{△x→0}\frac{f(1+3△x)-f(1)}{3△x}$等于(  )
A.f'(1)B.3f'(1)C.$\frac{1}{3}f'(1)$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)a,b,c∈R+,求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}≥\frac{1}{{\sqrt{ab}}}+\frac{1}{{\sqrt{bc}}}+\frac{1}{{\sqrt{ac}}}$
(2)若x,y∈R.求证:sinx+siny≤1+sinxsiny.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则下列结论正确的是④.
①△A1B1C1和△A2B2C2都是锐角三角形
②△A1B1C1和△A2B2C2都是钝角三角形
③△A1B1C1是钝角三角形,△A2B2C2是锐角三角形
④△A1B1C1是锐角三角形,△A2B2C2是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知三棱锥A-BCD内接于球O,AB=AD=AC=BD=$\sqrt{3}$,∠BCD=60°,则球O的体积为$\frac{9\sqrt{2}π}{8}$.

查看答案和解析>>

同步练习册答案