精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,求f(x)的解析式.

分析 由函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,求导,可得±1是f′(x)=0的两根,且f′(0)=-3,解方程组即可求得,a,b,c的值,从而求得f(x)的解析式

解答 解:f'(x)=3ax2+2bx+c,
依题意$\left\{\begin{array}{l}{f′(1)=3a+2b+c=0}\\{f′(-1)=3a-2b+c}\\{f′(0)=c=-3}\end{array}\right.$ 
解得a=1,b=0,c=-3,
∴f(x)=x3-3x

点评 本题考查利用导数研究函数的单调性和极值问题,考查利用导数研究曲线上某点的切线问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,则这个几何体的体积是(  )
A.$2\sqrt{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a$=(1,0),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),则$\overrightarrow a$与$\overrightarrow b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=ex-x-1的最小值是(  )
A.-ln2B.$-\sqrt{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆的极坐标方程为ρ=2(cosθ+sinθ),则该圆的圆心极坐标是(  )
A.$({1,\frac{π}{4}})$B.($\sqrt{2}$,$\frac{π}{4}$)C.($\frac{1}{2}$,$\frac{π}{4}$)D.$({2,\frac{π}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}中,a2+a4=10,a5=9,数列{bn}中,b1=a1,bn+1=bn+an
(1)求数列{an}的通项公式;
(2)若cn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{cn}的前n项和Tn
(3)求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{x^2}{9}$+$\frac{y^2}{4}$=1上一点M到直线x+2y-10=0的距离的最小值为(  )
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\overrightarrow m$•$\overrightarrow n$,其中向量$\overrightarrow m$=(2cosx,1),$\overrightarrow n$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线kx2-y2=1(k>0)的一条渐近线与直线2x+y-3=0垂直,则双曲线的离心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案