| A. | 2 | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$ | D. | 1 |
分析 设出与直线x+2y-10=0平行的直线方程为直线x+2y+m=0,联立直线方程与椭圆方程,由判别式等于0求得m值,再由两点间的距离公式得答案.
解答 解:设与直线x+2y-10=0平行的直线方程为直线x+2y+m=0,
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1}\\{x+2y+m=0}\end{array}\right.$,得25x2+18mx+9m2-144=0.
由(18m)2-100(9m2-144)=0,得576m2=14400,
解得m=±5.
当m=-5时,直线方程为x+2y-5=0,
此时两直线x+2y-10=0与直线x+2y-5=0的距离d=$\frac{|-10+5|}{\sqrt{5}}=\sqrt{5}$.
即椭圆$\frac{x^2}{9}$+$\frac{y^2}{4}$=1上一点M到直线x+2y-10=0的距离的最小值为$\sqrt{5}$.
故选:B.
点评 本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,体现了数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com