精英家教网 > 高中数学 > 题目详情
8.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

分析 (Ⅰ)根据散点图,即可判断出,
(Ⅱ)先建立中间量w=$\sqrt{x}$,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;
(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,
(ii)求出预报值得方程,根据函数的性质,即可求出.

解答 解:(Ⅰ)由散点图可以判断,$y=c+d\sqrt{x}$ 适合作为年销售y 关于年宣传费用x 的回归方程类型.…(2分)
(Ⅱ)令w=$\sqrt{x}$,先建立y关于w的线性回归方程,由于$\stackrel{∧}{d}$=$\frac{108.6}{1.6}$68,
$\stackrel{∧}{c}$=563-68×6.8=100.6,
所以y关于w的线性回归方程为$\stackrel{∧}{y}$=100.6+68w,
因此y关于x的回归方程为$\stackrel{∧}{y}$=100.6+68$\sqrt{x}$.
(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值$\stackrel{∧}{y}$═100.6+68$\sqrt{49}$=576.6,
年利润z的预报值$\stackrel{∧}{z}$=576.6×0.2-49=66.32,
(ii)根据(Ⅱ)的结果可知,年利润z的预报值$\stackrel{∧}{z}$=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12,
故宣传费用为46.24千元时,年利润的预报值最大.…(12分)

点评 本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a$=(1,0),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),则$\overrightarrow a$与$\overrightarrow b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{x^2}{9}$+$\frac{y^2}{4}$=1上一点M到直线x+2y-10=0的距离的最小值为(  )
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\overrightarrow m$•$\overrightarrow n$,其中向量$\overrightarrow m$=(2cosx,1),$\overrightarrow n$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知10件产品中有3件次品,从中任取2件,取到次品的件数为随机变量,用X表示,那么X的取值为(  )
A.0,1B.0,2C.1,2D.0,1,2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.阅读如图的程序,输出的s值等于15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x+1)=x2-x,则f(x)=x2-3x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线kx2-y2=1(k>0)的一条渐近线与直线2x+y-3=0垂直,则双曲线的离心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}的各项均为正数,a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6•pn
(1)当k=1,p=5时,若数列{an}成等比数列,求t的值;
(2)设数列{an}是一个等比数列,求{an}的公比及t(用p、k的代数式表示);
(3)当k=1,t=1时,设Tn=a1+$\frac{{a}_{2}}{p}$+$\frac{{a}_{3}}{{p}^{2}}$+…+$\frac{{a}_{n-1}}{{p}^{n-2}}$+$\frac{{a}_{n}}{{p}^{n-1}}$,参照教材上推导等比数列前n项和公式的推导方法,求证:{$\frac{1+p}{p}$•Tn-$\frac{{a}_{n}}{{p}^{n}}$-6n}是一个常数.

查看答案和解析>>

同步练习册答案