精英家教网 > 高中数学 > 题目详情
18.数列{an}的各项均为正数,a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6•pn
(1)当k=1,p=5时,若数列{an}成等比数列,求t的值;
(2)设数列{an}是一个等比数列,求{an}的公比及t(用p、k的代数式表示);
(3)当k=1,t=1时,设Tn=a1+$\frac{{a}_{2}}{p}$+$\frac{{a}_{3}}{{p}^{2}}$+…+$\frac{{a}_{n-1}}{{p}^{n-2}}$+$\frac{{a}_{n}}{{p}^{n-1}}$,参照教材上推导等比数列前n项和公式的推导方法,求证:{$\frac{1+p}{p}$•Tn-$\frac{{a}_{n}}{{p}^{n}}$-6n}是一个常数.

分析 (1)由an+an+1=6•5n,an+1+an+2=6•5n+1,得到等比数列(an}的公比q=5,由此能求出t的值.
(2)an+an+1+an+2+…+an+k=6pn,an+1+an+2+an+3+…+an+1+k=6pn+1,数列{an}是一个等比数列,所以求出公比为p,由此能求出t.
(3)由Tn=a1+$\frac{{a}_{2}}{p}$+$\frac{{a}_{3}}{{p}^{2}}$+…+$\frac{{a}_{n-1}}{{p}^{n-2}}$+$\frac{{a}_{n}}{{p}^{n-1}}$,$\frac{1}{p}$Tn=a1+$\frac{{a}_{1}+{a}_{2}}{p}$+$\frac{{a}_{2}+{a}_{3}}{{p}^{2}}$+…+$\frac{{a}_{n-1}+{a}_{n}}{{p}^{n-1}}$+$\frac{{a}_{n}}{{p}^{n}}$,由此能够证明 $\frac{1+p}{p}$Tn-$\frac{{a}_{n}}{{p}^{n}}$-6n=a1-6=-5.

解答 解:(1)an+an+1=6•5n
an+1+an+2=6•5n+1,…(2分)
设等比数列(an}的公比是q,
则an+an+1=6•5n•5,
∴q=5,…(4分)
n=1时,t+5t=30,∴t=5.…(5分)
(2)an+an+1+an+2+…+an+k=6pn
an+1+an+2+an+3+…+an+1+k=6pn+1,…(6分)
数列{an}是一个等比数列,所以求出公比为p,…(7分)
∴t(pn-1+pn+…+pn+k-1)=6pn,…(8分)
项数为n+k-1-(n-1)十1=k+1项,
当p=1时,t(k+1)=6,
∴t=$\frac{6}{k+1}$,…(9分)
当p≠1,且p>0时,t $\frac{{p}^{n-1}(1-{p}^{k+1})}{1-p}$=6pn
∴t=$\frac{6p(1-p)}{1-{p}^{k+1}}$..…(10分)
(3)证明:∵n是任意的正整数,当n=1时,$\frac{{a}_{1}+{a}_{2}}{p}$=6P1=6,
依此类推,当n取n-1项时,$\frac{{a}_{n-1}+{a}_{n}}{{p}^{n-1}}$=$\frac{6{p}^{n}}{{p}^{n-1}}$=6,
∴Tn=a1+$\frac{{a}_{2}}{p}$+$\frac{{a}_{3}}{{p}^{2}}$+…+$\frac{{a}_{n-1}}{{p}^{n-2}}$+$\frac{{a}_{n}}{{p}^{n-1}}$,
$\frac{1}{p}$Tn=$\frac{{a}_{1}}{p}$+$\frac{{a}_{2}}{{p}^{2}}$+$\frac{{a}_{3}}{{p}^{3}}$+…+$\frac{{a}_{n-1}}{{p}^{n-2}}$+$\frac{{a}_{n}}{{p}^{n}}$=a1+$\frac{{a}_{1}+{a}_{2}}{p}$+$\frac{{a}_{2}+{a}_{3}}{{p}^{2}}$+…+$\frac{{a}_{n-1}+{a}_{n}}{{p}^{n-1}}$+$\frac{{a}_{n}}{{p}^{n}}$,…(12分)
∴(1+$\frac{1}{p}$)Tn=2a1+$\frac{{a}_{1}+2{a}_{2}}{p}$+$\frac{{a}_{2}+2{a}_{3}}{{p}^{2}}$+…+$\frac{{a}_{n-1}+2{a}_{n}}{{p}^{n-1}}$+$\frac{{a}_{n}}{{p}^{n}}$=a1+6n-6+$\frac{{a}_{n}}{{p}^{n}}$,…(14分)
∴$\frac{1+p}{p}$Tn-$\frac{{a}_{n}}{{p}^{n}}$-6n=a1-6=-5.…(17分)

点评 本题考查数列的综合运用,综合性强,难度大,对数学思维的要求较高,有一定的探索性,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若等差数列{an}中,a3=3,则{an}的前5项和S5等于(  )
A.10B.15C.20D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x3+sinx+2(x∈R),若f(a)=2,则f(-a)的值为(  )
A.5B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A=(-1,0,1},B={0,a,a2},若A=B,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,a∈R,x∈R},
(1)求A的子集;
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合U=R,A={x|4≤2x<16},B={x|y=lg(x-3)}.求:
(1)A∩B        
(2)(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,四边形OABP是平行四边形,过点P的直线与射线OA,OB分别相交于点M,N,若$\overrightarrow{OM}$=x$\overrightarrow{OA}$,$\overrightarrow{ON}$=y$\overrightarrow{OB}$.
(1)把y用x表示出来(即求y=f(x)的解析式);
(2)设数列{an}的首项a1=1,前n项和Sn满足Sn=f(Sn-1)(n≥2且n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆上$\frac{x^2}{25}+\frac{y^2}{9}=1$上一点p到两焦点距离之积为m,则m取最大值时,p点的坐标是(  )
A.$({\frac{{5\sqrt{3}}}{2},\frac{3}{2}})$或 $({-\frac{{5\sqrt{3}}}{2},\frac{3}{2}})$B.$({\frac{5}{2},\frac{{3\sqrt{3}}}{2}})$或$({\frac{5}{2},-\frac{{3\sqrt{3}}}{2}})$
C.(5,0)或(-5,0)D.(0,3)或(0,-3)

查看答案和解析>>

同步练习册答案