精英家教网 > 高中数学 > 题目详情
20.已知f(x+1)=x2-x,则f(x)=x2-3x+2.

分析 利用换元法求解即可.

解答 解:f(x+1)=x2-x,
设t=x+1,则x=t-1,
那么f(x+1)=x2-x转化为g(t)=(t-1)2-(t-1)=t2-3t+2
∴f(x)=x2-3x+2.
故答案为:f(x)=x2-3x+2.

点评 本题考查了函数解析式的求法,利用了换元法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数y=log0.5(sin2x+cos2x)单调减区间为(kπ-$\frac{π}{8}$,kπ+$\frac{π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则下列结论正确的是④.
①△A1B1C1和△A2B2C2都是锐角三角形
②△A1B1C1和△A2B2C2都是钝角三角形
③△A1B1C1是钝角三角形,△A2B2C2是锐角三角形
④△A1B1C1是锐角三角形,△A2B2C2是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.根据空气质量指数API(为整数)的不同,可将空气质量分级如表:
API[0,50](50,100](100,150](150,200](200,250](250,300]
空气质量轻微污染轻度污染中度污染中重度污染
现对某城市30天的空气质量进行监测,获得30个API数据(每个数据均不同),统计绘得频率分布直方图如图.
(Ⅰ)请由频率分布直方图来估计这30天API的平均值;
(Ⅱ)若从获得的“空气质量优”和“空气质量中重度污染”的数据中随机选取2个数据进行复查,求“空气质量优”和“空气质量中重度污染”数据恰均被选中的概率;
(Ⅲ)假如企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为$S=\left\{\begin{array}{l}0,0≤ω≤100\\ 4ω-400,100<ω≤200\\ 8ω-600,200<ω≤300\end{array}\right.$,若将频率视为概率,在本年内随机抽取一天,试估计这天的经济损失S不超过600元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某市十所重点中学进行高二联考共有5000名学生,为了了解数学学科的学习情况,现从中随机的抽取若干名学生在这次测试中的数学成绩,制成如下频率分布表:
分组频数频率
[80,90)
[90,100)0.050
[100,110)0.200
[110,120)360.300
[120,130)0.275
[130,140)12
[140,150]0.050
合计
(1)根据上面的频率分布表,推出①,②,③,④处的数字分别为3,0.025,0.1,1;
(2)在所给的坐标系中画出[80,150]上的频率分布直方图;
(3)根据题中的信息估计总体120分及以上的学生人数为2550人;
(4)在抽取的样本中,在抽取2人,求这两人分数恰好都在[100,110)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知三棱锥A-BCD内接于球O,AB=AD=AC=BD=$\sqrt{3}$,∠BCD=60°,则球O的体积为$\frac{9\sqrt{2}π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若等差数列{an}中,a3=3,则{an}的前5项和S5等于(  )
A.10B.15C.20D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合U=R,A={x|4≤2x<16},B={x|y=lg(x-3)}.求:
(1)A∩B        
(2)(∁UA)∪B.

查看答案和解析>>

同步练习册答案