精英家教网 > 高中数学 > 题目详情

【题目】已知直线与抛物线C及其准线分别交于MN两点,F为抛物线的焦点,若,则m等于( )

A. B. C. D.

【答案】B

【解析】

由题意可知直线l过抛物线的焦点,得m=-k,MMM′⊥准线x=﹣1,垂足为M′∠M′MN与直线l倾斜角相等,根据抛物线的定义即可求得tan∠M′MN,即可求得k的值,进而得m

抛物线C:y2=4x的焦点F(1,0),因为所以直线l:y=kx+m过抛物线的焦点,所以m=-k,

MMM′⊥准线x=﹣1,垂足为M′,

由抛物线的定义,丨MM′=MF

∠M′MN与直线l倾斜角相等,由

cos∠M′MN= ,则tan∠M′MN=±因为

直线l的斜率k=m=-

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足).

(Ⅰ)证明数列为等差数列,并求的通项公式;

(Ⅱ)设数列的前项和为,若数列满足,且对任意的恒成立,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意的,都存在,使得,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;

②甲地该月14时的平均气温高于乙地该月14时的平均气温;

③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;

④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.

其中根据茎叶图能得到的统计结论的标号为(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是同一函数的是(

;②;③;④

A. ①② B. ①③ C. ③④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年“十一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段: ,后得到如图的频率分布直方图.

(1)求这40辆小型车辆车速的众数和中位数的估计值;

(2)若从车速在的车辆中任抽取2辆,求车速在的车辆恰有一辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:,并整理得到频率分布直方图(如图所示).

)已知样本中分数小于40的学生有5人,试估计总体中分数在区间内的人数.

)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD,PC⊥平面ABCD,PC=2,在四边形ABCD,∠B=∠C=90°,AB=4,CD=1,MPB,PB=4PM,PB与平面ABCD30°的角.

求证:(1)CM∥平面PAD.

(2)平面PAB⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点列)依次为函数图像上的点,点列)依次为轴正半轴上的点,其中),对于任意,点构成一个顶角的顶点为的等腰三角形.

1)证明:数列是等差数列;

2)证明:为常数,并求出数列的前项和

3)在上述等腰三角形中,是否存在直角三角形?若存在,求出值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案