精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若对任意的,都存在,使得,则实数的取值范围是______.

【答案】

【解析】

求出函数在区间上的值域为,由题意可知,由,可得出,由题意知,函数在区间上的值域包含,然后对三种情况分类讨论,求出函数在区间上的值域,可得出关于实数的不等式(组),解出即可.

由于函数上的减函数,则,即

所以,函数在区间上的值域为.

对于函数,内层函数为,外层函数为.

,得.

由题意可知,函数在区间上的值域包含.

函数的图象开口向上,对称轴为直线.

i)当时,函数在区间上单调递减,在区间上单调递增,则,即

此时,函数在区间上的值域为

由题意可得,解得,此时,

ii)当时,函数在区间上单调递减,在区间上单调递增,则,即

此时,函数在区间上的值域为

由题意可得,解得,此时

iii)当时,函数在区间上单调递减,则,则函数在区间上的值域为

由题意可得,解得,此时,.

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在区间上的值域.

(1)求的值;

(2)若不等式上恒成立,求实数的取值范围;

(3)若函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆的方程为,点为圆上的动点,过点的直线被圆截得的弦长为

(1)求直线的方程;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知真命题:“函数的图象关于点成中心对称图形”的等价条件为“函数是奇函数”.

1)将函数的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数图象对称中心的坐标;

2)已知命题:“函数的图象关于某直线成轴对称图象”的等价条件为“存在实数ab,使得函数是偶函数”.断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:

单价(元)

18

19

20

21

22

销量(册)

61

56

50

48

45

(l)根据表中数据,请建立关于的回归直线方程:

(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,,四边形为矩形,平面平面.

(1)求证:平面⊥平面

(2)在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张军在网上经营了一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120/千克、80/千克、70/千克、40/千克.为了增加销量,张军对以上四种干果进行促销,若一次性购买干果的总价达到150元,顾客就少付x(xZ)元,每笔订单顾客在网上支付成功后,张军会得到支付款的80%.

①当x15时,顾客一次性购买松子和腰果各1千克,需要支付_________________元;

在促销活动中,为保证张军每笔订单得到的金额均不低于促销的总价的70%,则x的最大值为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线C及其准线分别交于MN两点,F为抛物线的焦点,若,则m等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个人聚会,已知:

(1)每个人至少同其中个人互相认识

(2)对于其中任意个人,或者其中有2人相识或者余下的人中有2人相识证明:这个人中必有3人两两相识.

查看答案和解析>>

同步练习册答案