20£®ÉèÊýÁÐ{an}Âú×ãa1=1£¬an+1=Aan+$\frac{B}{{a}_{n}}$+C£¨n¡ÊN*£©
£¨¢ñ£©ÈôA=2£¬B=0£¬C=1£¬ÇóÖ¤£º{an+1}ÊǵȱÈÊýÁУ¬²¢Çó{an}ͨÏʽ£»
£¨¢ò£©ÈôA=1£¬B=1£¬C=0
£¨i£©ÇóÖ¤£º2¡Üan+12-an2¡Ü3
£¨ii£©ÇóÖ¤£º$\frac{3n-1}{3n-2}$¡Ü$\frac{{a}_{n+1}}{{a}_{n}}$¡Ü$\frac{2n}{2n-1}$£®

·ÖÎö £¨¢ñ£©Í¨¹ýÔÚ²»µÈʽan+1=2an+1Á½±ßͬʱ¼ÓÉÏ1¿É¹¹ÔìÊ×Ïî¡¢¹«±È¾ùΪ2µÄµÈ±ÈÊýÁÐ{an+1}£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£»
£¨¢ò£©Í¨¹ýA=1£¬B=1£¬C=0¿ÉµÃan¡Ý1£®£¨i£©½«an+1=an+$\frac{1}{{a}_{n}}$Á½±ßͬʱƽ·½£¬½áºÏan¡Ý1¿ÉµÃ½áÂÛ£»£¨ii£©Í¨¹ý·ÖÎö¿ÉÖªÎÊÌâ¼´Ö¤2n-1¡Üan2¡Ü3n-2£¬½áºÏ£¨i£©½áÂÛ£¬ÀûÓÃÀÛ¼Ó·¨¼ÆËã¼´µÃ½áÂÛ£®

½â´ð £¨¢ñ£©½â£º¡ßA=2£¬B=0£¬C=1£¬
¡àan+1=2an+1£¬an+1+1=2£¨an+1£©£¬
ÓÖ¡ßa1+1=2£¬
¡àÊýÁÐ{an+1}ÊÇÊ×Ïî¡¢¹«±È¾ùΪ2µÄµÈ±ÈÊýÁУ¬
¡àan=-1+2n£»
£¨¢ò£©Ö¤Ã÷£º¡ßA=1£¬B=1£¬C=0£¬
¡àan+1=an+$\frac{1}{{a}_{n}}$£¬
ÓÖ¡ßa1=1£¬
¡àan¡Ý1£®
£¨i£©¡ßan+1=an+$\frac{1}{{a}_{n}}$£¬
¡à${{a}_{n+1}}^{2}$=${{a}_{n}}^{2}$+2+$\frac{1}{{{a}_{n}}^{2}}$£¬
ÓÖ¡ß0£¼$\frac{1}{{{a}_{n}}^{2}}$¡Ü1£¬
¡à2£¼2+$\frac{1}{{{a}_{n}}^{2}}$¡Ü3£¬¼´2¡Üan+12-an2¡Ü3£»
£¨ii£©ÒªÖ¤£º$\frac{3n-1}{3n-2}$¡Ü$\frac{{a}_{n+1}}{{a}_{n}}$¡Ü$\frac{2n}{2n-1}$£¬
¼´Ö¤$\frac{1}{3n-2}$¡Ü$\frac{1}{{{a}_{n}}^{2}}$¡Ü$\frac{1}{2n-1}$£¬
¼´Ö¤2n-1¡Üan2¡Ü3n-2£¬
ÓÖÓÉ£¨i£©¿ÉÖª2¡Üan2-an-12¡Ü3£¬2¡Üan-12-an-22¡Ü3£¬¡­£¬2¡Üa22-a12¡Ü3£¬
Àۼӵãº2£¨n-1£©¡Üan2-a12¡Ü3£¨n-1£©£¬
ÓÉa1=1¿ÉÖª2n-1¡Üan2¡Ü3n-2£¬´Ó¶øÃüÌâµÃÖ¤£®

µãÆÀ ±¾ÌâÊÇÒ»µÀ¹ØÓÚÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣬¿¼²é·ÖÎö·¨¡¢ÀÛ¼Ó·¨£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì°²»ÕÁù°²Ò»ÖиßÈýÉÏѧÆÚÔ¿¼¶þÊýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖªº¯ÊýÖÁÉÙÓÐ5¸öÁãµã£¬ÔòʵÊýµÄȡֵ·¶Î§ÊÇ£¨ £©

A£® B£® C. D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®?x¡ÊR£¬Ê¹²»µÈʽ|x-2|+|x-4|¡Ü2$\sqrt{2}$sin¦Á³ÉÁ¢£¬Ôò¦ÁµÄȡֵ·¶Î§Îª2k¦Ð+$\frac{¦Ð}{4}$¡Ü¦Á¡Ü2k¦Ð+$\frac{3¦Ð}{4}$£¨k¡ÊZ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÈçͼÊÇijԲ¹°ÐÎÇÅÒ»¿×Ô²¹°µÄʾÒâͼ£®Õâ¸öͼµÄÔ²¹°¿ç¶ÈAB=20m£¬¹°¸ßOP=4m£¬½¨Ôìʱÿ¼ä¸ô4mÐèÒªÓÃÒ»¸ùÖ§ÖùÖ§³Å£¬ÔòÖ§ÖùA2P2=3.86m
£¨²Î¿¼Êý¾Ý£º$\sqrt{30}$=5.478£¬$\sqrt{33}$=5.744£¬¾«È·µ½0.01m£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªm¡ÊR£¬Ö±Ïß1£ºmx-£¨m2+1£©y=4mºÍÔ²C£ºx2+y2-8x+4y+16=0ÏàÇУ¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=|x-1|+|x-2|£¬¼Çf£¨x£©µÄ×îСֵΪk£®
£¨1£©½â²»µÈʽf£¨x£©¡Üx+1£»
£¨2£©ÊÇ·ñ´æÔÚÕýÊýa¡¢b£¬Í¬Ê±Âú×㣺2a+b=k£¬$\frac{1}{a}$+$\frac{2}{b}$=4£¿²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èôº¯Êýf£¨x£©=a2£¨2-a£©xÊÇÖ¸Êýº¯Êý£¬ÔòaµÈÓÚ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£ºÒÑÖªPA=PB£¬¡ÏAPB=2¡ÏACB£¬ACÓëPB½»ÓÚµãD£¬ÈôPB=4£¬PD=3£¬AD=5£¬ÔòDC=$\frac{7}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÔ²C£ºx2+y2=4£¬Ö±Ïßl£ºx+$\sqrt{2}$y-4=0£¬µãPÔÚÖ±ÏßlÉÏ£¬µãQÔÚÔ²CÉÏ£¬Ôò¡ÏOPQ£¨ÆäÖÐOÎª×ø±êÔ­µã£©µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{4}$B£®$\frac{¦Ð}{3}$C£®$\frac{¦Ð}{2}$D£®$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸