精英家教网 > 高中数学 > 题目详情
14.已知圆C:x2+y2=4,直线l:x+$\sqrt{2}$y-4=0,点P在直线l上,点Q在圆C上,则∠OPQ(其中O为坐标原点)的最大值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 由题意画出图形,在△OPQ中,由正弦定理可得$sin∠OPQ=OQ•\frac{sin∠OQP}{OP}=2•\frac{sin∠OQP}{OP}$,知当∠OQP=90°,且OP最小时,sin∠OPQ有最大值,由点到直线的距离公式求出OP的最小值,则答案可求.

解答 解:如图,

连接OP、OQ、PQ,
在△OPQ中,由正弦定理得:$\frac{OQ}{sin∠OPQ}=\frac{OP}{sin∠OQP}$,
∴$sin∠OPQ=OQ•\frac{sin∠OQP}{OP}=2•\frac{sin∠OQP}{OP}$,
∴当∠OQP=90°,且OP最小时,sin∠OPQ有最大值,
此时$O{P}_{min}=\frac{|-4|}{\sqrt{3}}=\frac{4}{\sqrt{3}}$,∴$(sin∠OPQ)_{max}=\frac{\sqrt{3}}{2}$,则∠OPQ的最大值为$\frac{π}{3}$.
故选:B.

点评 本题考查直线与圆的位置关系的应用,考查了数学转化思想方法,训练了正弦定理的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设数列{an}满足a1=1,an+1=Aan+$\frac{B}{{a}_{n}}$+C(n∈N*
(Ⅰ)若A=2,B=0,C=1,求证:{an+1}是等比数列,并求{an}通项公式;
(Ⅱ)若A=1,B=1,C=0
(i)求证:2≤an+12-an2≤3
(ii)求证:$\frac{3n-1}{3n-2}$≤$\frac{{a}_{n+1}}{{a}_{n}}$≤$\frac{2n}{2n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,点D在AB上,E在AC上.且∠B=∠C,那么补充下列一个条件后仍无法判定△ABE≌△ACD的是(  )
A.AE=ADB.∠AEB=∠ADCC.CE=BDD.AB=AC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}的前n项和为Sn,且an2-4Sn+4n=0(n∈N*).
(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{a}_{1}^{2}}$+$\frac{1}{{a}_{2}^{2}}$+…+$\frac{1}{{a}_{n}^{2}}$<$\frac{1}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知动圆过定点(0,1),且直线y=-1相切.
(1)求动圆圆心的轨迹C的方程;
(2)过轨迹C上一点M(2,n)作倾斜角互补的两条M线,分别与C交于异于M的A,B两点,求证:直线AB的斜率为定值:
(3)如果A,B两点的横坐标均不大于0,求△MAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-a-1)ex
(Ⅰ)若函数的最小值为-1,求实数a的值;
(Ⅱ)若x1>x2,且有x1+x2=2a,求证:f(x1)>f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知不等式|x-3|+|x-4|<2a.
(1)若a=1,求不等式的解集;  
(2)若已知不等式有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知与定点O(0,0),A(0,3)的距离比为$\frac{1}{2}$的点P的轨迹为曲线C,过点B(0,2)的直线l与曲线C交于M,N两点.
(1)求曲线C的轨迹方程;
(2)判断$\overrightarrow{BM}$•$\overrightarrow{BN}$是否为定值?若是求出这个定值,若不是请说明理由;
(3)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“a=-1”是“直线ax-y+5=0与直线(a-1)x+(a+3)y-2=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

查看答案和解析>>

同步练习册答案