精英家教网 > 高中数学 > 题目详情
4.“a=-1”是“直线ax-y+5=0与直线(a-1)x+(a+3)y-2=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

分析 对a分类讨论,利用两条直线相互垂直的充要条件即可得出.

解答 解:当a=-3时,直线3x-y+5=0的斜率为3,直线-4x-2=0斜率不存在,故不垂直,
当a≠-3时直线ax-y+5=0的斜率为a,直线(a-1)x+(a+3)y-2=0的斜率为$\frac{1-a}{a+3}$,
若两直线垂直,
则a•$\frac{1-a}{a+3}$=-1,解得a=-1或a=3,
“a=-1”是“直线ax-y+5=0与直线(a-1)x+(a+3)y-2=0垂直”的充分不必要条件.
故选A.

点评 本题通过逻辑来考查两直线垂直的判定,必要条件、充分条件与充要条件的判断,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知圆C:x2+y2=4,直线l:x+$\sqrt{2}$y-4=0,点P在直线l上,点Q在圆C上,则∠OPQ(其中O为坐标原点)的最大值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=x3+m-2为R上的奇函数,则函数g(x)=$\left\{\begin{array}{l}{{e}^{x}+x-m,x≤2}\\{mlnx-x,x>2}\end{array}\right.$ 的零点的个数为1个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知两个单位向量$\overrightarrow a$,$\overrightarrow b$的夹角为60°,且满足$\overrightarrow a$⊥($\overrightarrow a$-λ$\overrightarrow b$),则实数λ的值为(  )
A.-2B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知如图,四边形ABCD是圆O的内接四边形,对角线AC,BD交于点E,直线AP是圆O的切线,切点为A,∠PAB=∠BAC.
(1)若BD=5,BE=2,求AB的长;
(2)在AD上取一点F,若∠FED=∠CED,求∠BAF+∠BEF的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.
(1)证明:平面PAD⊥平面ABFE;
(2)当正四棱锥P-ABCD的高为1时,求几何体E-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.过点M(1,0)的直线交椭圆$\frac{{x}^{2}}{4}$+y2=1于A、B两点,直线l:x=4与x轴交于点N,设点A关于x轴的对称点为P(异于点B).
(Ⅰ)求证:P、B、N三点共线;
(Ⅱ)过点A作PB的平行线交直线l:x=4于点Q,记△AQM,△QMN,△BMN的面积分别为S1,S2,S3,求$\frac{{S}_{2}^{2}}{{S}_{1}{S}_{3}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ln(1+x)一$\frac{ax}{x+1}$(a>0).
(I)当f(x)在[0,+∞)内单调递增时,求实数a的取值范围;
(Ⅱ)证明:${(\frac{2015}{2016})^{2016}}<\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ=120°,则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的正射影的数量为-2.

查看答案和解析>>

同步练习册答案