精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+b,
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程是y=x+1,求a,b的值;
(Ⅱ)若函数f(x)在区间(0,2)内单调递减.
(1)求a的取值集合A; 
(2)对任意a∈A∩[-7,+∞)和x∈[0,4],有f(x)>a2恒成立,求实数b的取值范围.
考点:导数在最大值、最小值问题中的应用,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)求出曲线y=f(x)的导数,利用在点(1,f(1))处的切线方程是y=x+1,即可求a,b的值;
(Ⅱ)(1)要使f(x)在(0,2)内单调递减,则f′(x)≤0在(0,2)内恒成立.即可求a的取值集合A; 
(2)(i)当-7≤a≤-6时,f(x)在[0,4]上单调递减,函数的最小值>a2在a∈[-7,-6]上恒成立,求出b的范围;
(ii)当-6<a≤-3时,f(x)在[0,-
2a
3
]
上单调递减,[-
2a
3
,4]
上单调递增.有f(x)的最小值>a2恒成立,求实数b的取值范围.即可.
解答: 解:(Ⅰ)f′(x)=3x2+2ax,
f/(1)=1
f(1)=2
,即
3+2a=1
1+a+b=2

a=-1
b=2
-----------(4分)
(Ⅱ)(1)要使f(x)在(0,2)内单调递减,则f′(x)≤0在(0,2)内恒成立.
∴3x2+2ax≤0即a≤-
3
2
x
在(0,2)上恒成立.
∴a≤-3即A=(-∞,-3]------------------------(7分)
(2)∵a∈A∩[-7,+∞)=[-7,-3]
(i)当-7≤a≤-6时,f(x)在[0,4]上单调递减,
fmin(x)=f(4)=64+16a+b>a2在a∈[-7,-6]上恒成立,
∴b>a2-16a-64在a∈[-7,-6]上恒成立∴b>97------------(10分)
(ii)当-6<a≤-3时,f(x)在[0,-
2a
3
]
上单调递减,[-
2a
3
,4]
上单调递增.
fmin(x)=f(-
2a
3
)>a2
在a∈(-6,-3]上恒成立.
b>-
4a3
27
+a2
在a∈(-6,-3]上恒成立
g(a)=-
4a3
27
+a2
a∈(-6,-3]
g/(a)=-
4a2
9
+2a∈(-28,-10]

即g(a)在a∈(-6,-3]上单调递减.
∴g(a)>g(-6)=68,∴b>68-----------------------------------(14分)
综上所述,b>97-------------------------------------------------------(15分)
点评:本题主要考查利用导数研究函数的单调性等性质,及导数应用等基础知识,同时考查分类讨论等综合解题能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入a1=2,a2=0,a3=1,a4=4,则计算机输出的结果是(  )
A、2B、0C、1D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某城市有一条公路从正西方AO通过市中心O后转向东北方OB,现要修筑一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,为了市民出行方便与城市环境问题,现要求市中心O到AB的距离为10km,设∠OAB=α.
(1)试求AB关于角α的函数关系式;
(2)问把A、B分别设在公路上离市中心O多远处,才能使AB最短,并求其最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一新生1000人中,来自A,B,C,D,E五个不同的初中校,现从中随机抽取20人,对其所在初中校进行统计分析,得到频率分布表如下:
初中校 A B C D E
频率 0.05 m 0.15 0.35 n
(Ⅰ)在抽取的20个同学中,来自E学校的为2人,求m,n的值;
(Ⅱ)在(Ⅰ)的条件下,从来自C和E两学校的同学中任取2人,求抽取的2个人来自不同学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=ax2,直线y=x+
1
4
经过抛物线的焦点F.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设P(x0,y0)(x0≠0)是抛物线上一点,过点P且与P处的切线垂直的直线l与抛物线C的另一个交点为Q,P点关于焦点F的对称点为R,求△PQR面积的最小值和此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

空气质量指数(AQI)是衡量空气质量好坏的标准,表是我国南方某市气象环保部门从去年的每天空气质量检测数据中,随机抽取的40天的统计结果:
空气质量指数(AQI)国家环保标准频数(天)频率
[0,50]一级(优)4
(50,100]二级(良)20
(100,150]三级(轻度污染)8
(150,200]四级(中度污染)4
(200,300]五级(重度污染)3
(300,+∞)六级(严重污染)1
(1)若以这40天的统计数据来估计,一年中(365天)该市有多天的空气质量达到优良?
(2)若将频率视为概率,某中学拟在今年五月份某三天召开运动会,以上表的数据为依据,问:
①这三天空气质量都达标(空气质量属一、二、三级内)的概率;
②这三天恰好有一天空气质量不达标(指四、五、六级)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠C=45°,D为BC中点,BC=2.记锐角∠ADB=α.且满足cosα=-
7
25

(1)求cos∠CAD;
(2)求BC边上高的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的奇数项是首项为1公差为d的等差数列,偶数项是首项为2公比为q的等比数列.数列{an}前n项和为Sn,且满足S3=a4,a3+a5=2+a4
(1)求d和q的值;
(2)求数列{an}的通项公式和前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an∈N*,对于任意n∈N*,an≤an+1,若对于任意正整数k,在数列中恰有k个k出现,则a2014=
 

查看答案和解析>>

同步练习册答案