精英家教网 > 高中数学 > 题目详情
已知抛物线C:y=ax2,直线y=x+
1
4
经过抛物线的焦点F.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设P(x0,y0)(x0≠0)是抛物线上一点,过点P且与P处的切线垂直的直线l与抛物线C的另一个交点为Q,P点关于焦点F的对称点为R,求△PQR面积的最小值和此时P点的坐标.
考点:直线与圆锥曲线的综合问题,抛物线的标准方程,直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程,圆锥曲线中的最值与范围问题
分析:(Ⅰ)求出抛物线的焦点坐标,即可求抛物线C的方程;
(Ⅱ)设P(x0,y0)(x0≠0)是抛物线上一点,推出直线PQ的方程,与抛物线联立,利用弦长公式,点到直线的距离,表示出三角形的面积,通过函数的导数,求解△PQR面积的最小值和此时P点的坐标.
解答: 解:(Ⅰ)焦点F(0,
1
4a
)
,∴
1
4a
=
1
4
即a=1∴抛物线C:x2=y-------------------------(3分)
(Ⅱ)设P(x0x02),Q(x1x12)F(0,
1
4
)
,∴R(-x0
1
2
-x02)
---------------------------(4分)
lPQ:y-x02=-
1
2x0
(x-x0)
y=-
1
2x 0
x+
1
2
+x02

联立
y=-
1
2x0
x+
1
2
+x02
x2=y
,得x2+
1
2x0
x-(
1
2
+x02)=0

x 0+x1=-
1
2x0
x0+x1=-(
1
2
+x02)
--------------------------------------------------------------(7分)
|PQ|=
1+
1
4x02
|x0-x1|=
(1+
1
4x02
)(
1
4x02
+4x02+2)
----------------------(9分)
R(-x0
1
2
-x02)
到PQ的距离d=
|2x02+
1
2
|
1+
1
4x02
------------------------------------(11分)
S△PQR=
1
2
|PQ|•d=
1
2
|2x02+
1
2
|
1
4x02
+4x02+2 
=
1
8
(4x02+1)2
|x0|


f(x)=
(4x2+1)2
x
(x>0)

f(x)=16x3+8x+
1
x
f/(x)=48x2+8-
1
x2
=
(4x2+1)(12x2-1)
x2

x2=
1
12
时f(x)取得最小值.
故△PQR的面积的最小值为
4
3
9
,此时P(±
3
6
1
12
)
--------------------------------(14分)
点评:本题主要考查抛物线几何性质,直线与抛物线的位置关系,同时考查解析几何的基本思想方法和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集U=R,A={x∈N|y=ln(2-x)},B={x|2x(x-2)≤1},A∩B=(  )
A、{x|x≥1}
B、{x|1≤x<2}
C、{1}
D、{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

由某种设备的使用年限xi(年)与所支出的维修费yi(万元)的数据资料算得如下结果,
5
i=1
xi2=90,
5
i=1
xiyi=112,
5
i=1
xi=20,
5
i=1
yi=25.
(1)求所支出的维修费y对使用年限x的线性回归方程
y
=
b
x+
a

(2)①判断变量x与y之间是正相关还是负相关;
②当使用年限为8年时,试估计支出的维修费是多少.
(附:在线性回归方程
y
=
b
x+
a
中,
b
=
n
i=1
xiyi-n
.
xy
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x
,其中
.
x
.
y
为样本平均值.)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图为函数f(x)=2sin(ωx+φ)(ω>0,0<φ<
π
2
)的部分图象.
(1)求f(x)的解析式及其单调递增区间;
(2)求函数g(x)=
f(x)+2
f(x+
π
4
)+2
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-ex(a∈R)
(Ⅰ)当a=1时,令h(x)=f′(x),求h(x)的单调区间;
(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2).
(ⅰ)求实数a的取值范围;
(ⅱ)证明:-
e
2
<f(x1)<-1(注:e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+b,
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程是y=x+1,求a,b的值;
(Ⅱ)若函数f(x)在区间(0,2)内单调递减.
(1)求a的取值集合A; 
(2)对任意a∈A∩[-7,+∞)和x∈[0,4],有f(x)>a2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(1+cosα,1-sinα),参数α∈R,点Q在曲线C:ρ=
6
2
sin(θ+
π
4
)
上.
(1)求点P的轨迹方程和曲线C的直角坐标方程;
(2)求点P与点Q之间距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.
(Ⅰ)根据直方图估计这个开学季内市场需求量x的众数和中位数(四舍五入取整数);
(Ⅱ)将y表示为x的函数;
(Ⅲ)根据直方图估计利润y不少于4800元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某个四面体的三视图,若在该四面体的外接球内任取一点,则点落在四面体内的概率为
 

查看答案和解析>>

同步练习册答案