7£®ÑĮ̀ˮ¹ûÒÔ¡°ÆÜϼƻ¹û¡¢À³ÑôÀæ¡¢¸£É½´óÓ£ÌÒ¡±ÎÅÃû£¬ÏÖ´ÓÊÐÅ©¿ÆÔºÅàÓýµÄÓ£ÌÒÊ÷ÃçÖÐËæ»ú³éÈ¡100¿Ã×÷ΪÑù±¾£¬²âµÃÕâЩÊ÷ÃçµÄÖê¸ß£¨µ¥Î»£ºcm£©²¢»æÖÆÆµÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ
£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼¿ÉÈÏΪ£¬ÕâЩӣÌÒÊ÷Ê÷ÃçµÄÖê¸ßX·þ´ÓÕý̬·Ö²¼
N£¨¦Ì£¬¦Ò2£©£¬ÆäÖЦ̽üËÆÎªÑù±¾Æ½¾ùÊý$\overline{x}$£¬¦Ò½üËÆÎªÑù±¾·½²îs2£¬ÀûÓøÃÕý̬·Ö²¼£¬ÇóP£¨79.5£¼X£¼104.5£©
£¨2£©Ä³¹ûÅ©ÂòÁË20¿ÃÕâÖÖ™ÑÌÒÊ÷Ã磬¼Ç¦Î±íʾÕâ20¿ÃÊ÷ÃçÖê¸ßλÓÚÇø¼ä£¨79.5 104.5£©µÄ¿ÃÊý£¬ÀûÓã¨1£©µÄ½á¹û£¬ÇóE¦Î£¨½á¹û±£ÁôÕûÊý£©
£¨3£©ÈôÖê¸ßλÓÚÇø¼ä£¨79.5£¬104.5£©µÄÊ÷ÃçÊÓΪ¡°ÓÅÁ¼¡±£¬²¢ÒÔ£¨2£©ÖеÄE¦ÎΪ¡°ÓÅÁ¼¡±¿ÃÊý£®´ÓÕâ20¿ÃÊ÷ÃçÖÐÈÎÈ¡3¿Ã£¬¼Ç¦ÇΪ¡°ÓÅÁ¼¡±µÄ¿ÃÊý£¬Çó¦ÇµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
¸½£º$\sqrt{39}$¡Ö6.25£¬ÈôZ¡«N£¨¦Ì£¬¦Ò2£©£¬ÔòP£¨¦Ì-¦Ò£¼Z£¼¦Ì+¦Ò£©=0.6827£¬P£¨¦Ì-2¦Ò£¼Z£¼¦Ì+2¦Ò£©=0.9545£®

·ÖÎö £¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼Çó³öÓ£ÌÒÊ÷Ê÷ÃçµÄÖê¸ßµÄƽ¾ùÊýºÍ·½²î£¬´Ó¶øµÃµ½X¡«N£¨92£¬156£©£¬ÓÉ´ËÄÜÇó³öP£¨79.5£¼X£¼104.5£©£®
£¨2£©ÓÉÌâÒâÖª ¦Î¡«B£¨20£¬0.6827£©£¬ÓÉ´ËÄÜÇó³öE¦Î£®
£¨3£©20¿ÃÊ÷ÃçÖС°ÓÅÁ¼¡±µÄ¿ÃÊýΪ14£¬¦ÇµÄËùÓÐȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÇµÄ·Ö²¼ÁкÍE¦Ç£®

½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼µÃ£º
$\overline{x}$=70¡Á0.1+80¡Á0.15+90¡Á0.4+100¡Á0.2+110¡Á0.1+¡Á0.05=92£¬
S2=222¡Á0.1+122¡Á0.15+22¡Á0.4+82¡Á0.2+182¡Á0.1+282¡Á0.05=156£¬
¡àX¡«N£¨92£¬156£©£¬
¡àP£¨79.5£¼X£¼104.5£©=P£¨92-12.5£¼X£¼92+12.5£©=0.6827£®
£¨2£©ÓÉÌâÒâÖª ¦Î¡«B£¨20£¬0.6827£©£¬
¡àE¦Î=20¡Á0.6827=13.654¡Ö14£®
£¨3£©ÓÉ£¨2£©¿ÉÖª20¿ÃÊ÷ÃçÖС°ÓÅÁ¼¡±µÄ¿ÃÊýΪ14£¬
Ôò¦ÇµÄËùÓÐȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Ç=0£©=$\frac{{C}_{6}^{3}{C}_{14}^{0}}{{C}_{20}^{3}}$=$\frac{20}{1140}$£¬
P£¨¦Ç=1£©=$\frac{{C}_{6}^{2}{C}_{14}^{1}}{{C}_{20}^{3}}$=$\frac{210}{1140}$£¬
P£¨¦Ç=2£©=$\frac{{C}_{6}^{1}{C}_{14}^{2}}{{C}_{20}^{3}}$=$\frac{546}{1140}$£¬
P£¨¦Ç=3£©=$\frac{{C}_{6}^{0}{C}_{14}^{3}}{{C}_{20}^{3}}$=$\frac{364}{1140}$£¬
¡à¦ÇµÄ·Ö²¼ÁÐΪ£º

 ¦Ç 0 1 2 3
 P $\frac{20}{1140}$ $\frac{210}{1140}$ $\frac{546}{1140}$ $\frac{364}{1140}$
E¦Ç=$\frac{20}{1140}¡Á0+\frac{210}{1140}¡Á1+\frac{546}{1140}¡Á2+\frac{364}{1140}¡Á3$=$\frac{21}{10}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÄÇ󷨣¬¿¼²éƵÂÊ·Ö²¼Ö±·½Í¼¡¢Õý̬·Ö²¼¡¢ÅÅÁÐ×éºÏµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÈôOÓëF1£¬F2·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÖÐÐĺÍ×ó¡¢ÓÒ½¹µã£¬¹ýO×öÖ±Ïß½»ÍÖÔ²CÓÚP£¬QÁ½µã£¬Èô|$\overrightarrow{PQ}$|µÄ×î´óÖµÊÇ4£¬¡÷PF1F2µÄÖܳ¤ÊÇ4+2$\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Éè²»¹ýµãOµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Âú×ãÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Çó¡÷OABÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¼¯ºÏA={0£¬5£¬10}£¬¼¯ºÏB={a+2£¬a2+1}£¬ÇÒA¡ÉB={5}£¬ÔòÂú×ãÌõ¼þµÄʵÊýaµÄ¸öÊýÓУ¨¡¡¡¡£©
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½üÄêÀ´£¬È«¹ú¸÷µØÊý³ÇÊÐÎÛȾÑÏÖØ£¬ÎªÁËÌá³öÓÐЧµÄÕûÖη½°¸£¬½«Ì½¾¿³µÁ÷Á¿ÓëPM2.5µÄŨ¶ÈµÄ¹ØÏµ£¬Ïֲɼ¯µ½Ä³³ÇÊÐ2017Äê4Ô·ÝijÐÇÆÚÐÇÆÚÒ»µ½ÐÇÆÚÈÕijһʱ¼ä¶Î³µÁ÷Á¿ÓëPM2.5µÄÊý¾ÝÈç±í£º
ʱ¼äÐÇÆÚÒ»ÐÇÆÚ¶þÐÇÆÚÈýÐÇÆÚËÄÐÇÆÚÎåÐÇÆÚÁùÐÇÆÚÆß
³µÁ÷Á¿x£¨ÍòÁ¾£©1234567
PM2.5µÄŨ¶Èy£¨Î¢¿Ë/Á¢·½Ã×£©28303541495662
£¨1£©Çóy¹ØÓÚxµÄÏßÐԻع鷽³Ì£»
£¨2£©¢ÙÀûÓã¨1£©ËùÇóµÄ»Ø¹é·½³Ì£¬Ô¤²â¸ÃÊгµÁ÷Á¿Îª8ÍòÁ¾Ê±PM2.5µÄŨ¶È£»
¢Ú¹æ¶¨£ºµ±Ò»ÌìÄÚPM2.5µÄŨ¶Èƽ¾ùÖµÔÚ£¨0£¬50]ÄÚ£¬¿ÕÆøÖÊÁ¿µÈ¼¶ÎªÓÅ£»µ±Ò»ÌìÄÚPM2.5µÄŨ¶Èƽ¾ùÖµÔÚ£¨50£¬100]ÄÚ£¬¿ÕÆøÖÊÁ¿µÈ¼¶ÎªÁ¼£®ÎªÊ¹¸ÃÊÐijÈÕ¿ÕÆøÖÊÁ¿ÎªÓÅ»òÕßΪÁ¼£¬ÔòÓ¦¿ØÖƵ±Ìì³µÁ÷Á¿ÔÚ¶àÉÙÍòÁ¾ÒÔÄÚ£¿£¨½á¹ûÒÔÍòÁ¾Îªµ¥Î»£¬±£ÁôÕûÊý£©
²Î¿¼¹«Ê½£º»Ø¹éÖ±Ïߵķ½³ÌÊÇ$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£¬ÆäÖÐ$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£®
Ìáʾ£º$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=1372£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èô¸´Êý$\frac{m+2i}{1-i}$ΪʵÊý£¨iΪÐéÊýµ¥Î»£©£¬ÔòʵÊýmµÈÓÚ£¨¡¡¡¡£©
A£®1B£®2C£®-1D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÉèÈ«¼¯U=R£¬¼¯ºÏA={x|-1£¼x£¼3}£¬B={x|x£¼1}£¬ÔòA¡É£¨∁UB£©=£¨¡¡¡¡£©
A£®{x|1£¼x£¼3}B£®{x|1¡Üx£¼3}C£®{x|1£¼x¡Ü3}D£®{x|1¡Üx¡Ü3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚ¡÷ABCÖУ¬A£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÒÑÖªb+acosC=0£¬sinA=2sin£¨A+C£©£¬Ôò$\frac{c}{a}$µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{7}}{2}$B£®$\frac{\sqrt{7}}{3}$C£®$\frac{\sqrt{5}}{2}$D£®$\frac{\sqrt{5}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÃæ¼¸ÖÖÍÆÀíÊÇÀà±ÈÍÆÀíµÄÊÇ£¨¡¡¡¡£©
A£®Á½ÌõÖ±Ï߯½ÐУ¬Í¬ÅÔÄڽǻ¥²¹£¬Èç¹û¡ÏAºÍ¡ÏBÊÇÁ½ÌõƽÐÐÖ±ÏßµÄͬÅÔÄڽǣ¬Ôò¡ÏA+¡ÏB=180¡ã
B£®Ò»ÇÐżÊý¶¼Äܱ»2Õû³ý£¬2100ÊÇżÊý£¬ËùÒÔ2100Äܱ»2Õû³ý
C£®ÓÉÆ½ÃæÏòÁ¿µÄÔËËãÐÔÖÊ£¬ÍƲâ¿Õ¼äÏòÁ¿µÄÔËËãÐÔÖÊ
D£®Ä³Ð£¸ß¶þ¼¶ÓÐ20°à£¬1°àÓÐ51λÍÅÔ±£¬2°àÓÐ53λÍÅÔ±£¬3°àÓÐ52λÍÅÔ±£¬ÓÉ´Ë¿ÉÒÔÍÆ²â¸÷°à¶¼³¬¹ý50λÍÅÔ±

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªµÈ²îÊýÁÐ{an}Âú×ãa1=1£¬a4=4£»ÊýÁÐ{bn}Âú×ãb1=a2£¬b2=a5£¬ÊýÁÐ{bn-an}ΪµÈ±ÈÊýÁУ®
£¨¢ñ£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨¢ò£©ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸