10£®ÈôOÓëF1£¬F2·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÖÐÐĺÍ×ó¡¢ÓÒ½¹µã£¬¹ýO×öÖ±Ïß½»ÍÖÔ²CÓÚP£¬QÁ½µã£¬Èô|$\overrightarrow{PQ}$|µÄ×î´óÖµÊÇ4£¬¡÷PF1F2µÄÖܳ¤ÊÇ4+2$\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Éè²»¹ýµãOµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Âú×ãÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Çó¡÷OABÃæ»ýµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º2a=4£¬2a+2c=4+2$\sqrt{3}$£¬a2=b2+c2£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÓÉÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+m£¨m¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬»¯Îª£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬¡÷£¾0£®ÓÉÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬¿ÉµÃ$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=k2£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃk2£®ÀûÓÃ|AB|=$\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÔ­µãOµ½Ö±ÏßABµÄ¾àÀëd£¬¿ÉµÃS¡÷OAB=$\frac{1}{2}$|AB|•d£¬¼°Æä»ù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º2a=4£¬2a+2c=4+2$\sqrt{3}$£¬a2=b2+c2£¬
½âµÃa=2£¬c=$\sqrt{3}$£¬b=1£¬
¡àÍÖÔ²·½³ÌC£º$\frac{{x}^{2}}{4}$+y2=1£®
£¨2£©ÓÉÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+m£¨m¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬»¯Îª£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬
ÓÉ¡÷=64k2m2-4£¨1+4k2£©£¨4m2-4£©£¾0£¬¿ÉµÃ£º1+4k2£¾m2£®
¡àx1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$£¬
¡ßÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬
¡à$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=k2£¬
¡à£¨kx1+m£©£¨kx2+m£©=k2x1x2£¬
¡àmk£¨x1+x2£©+m2=0£¬
¡à-$\frac{8km}{1+4{k}^{2}}$¡Ák+m=0£¬¿ÉµÃk2=$\frac{1}{4}$£®
½âµÃk=$¡À\frac{1}{2}$£®
¡à|AB|=$\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{£¨1+{k}^{2}£©[\frac{64{k}^{2}{m}^{2}}{£¨1+4{k}^{2}£©^{2}}-4¡Á\frac{4{m}^{2}-4}{1+4{k}^{2}}]}$=$\sqrt{5£¨2-{m}^{2}£©}$£®
Ô­µãOµ½Ö±ÏßABµÄ¾àÀëd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬
¡àS¡÷OAB=$\frac{1}{2}$|AB|•d=$\frac{1}{2}¡Á$$\sqrt{5£¨2-{m}^{2}£©}$¡Á$\frac{|m|}{\sqrt{1+{k}^{2}}}$=|m|$•\sqrt{2-{m}^{2}}$¡Ü$\frac{{m}^{2}+2-{m}^{2}}{2}$=1£®µ±ÇÒ½öµ±|m|=1ʱȡµÈºÅ£®
¡à¡÷OABÃæ»ýµÄȡֵ·¶Î§ÊÇ£¨0£¬1]£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ð±ÂʼÆË㹫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÉèÖ±Ïß3x-2y-12=0ÓëÖ±Ïß4x+3y+1=0½»ÓÚµãM£¬ÈôÒ»Ìõ¹âÏß´ÓµãP£¨3£¬2£©Éä³ö£¬¾­yÖá·´Éäºó¹ýµãM£¬ÔòÈËÉä¹âÏßËùÔÚµÄÖ±Ïß·½³ÌΪ£¨¡¡¡¡£©
A£®x-y-1=0B£®x-y+1=0C£®x-y-5=0D£®x+y-5=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=£¨1-2a£©lnx+ax+$\frac{2}{x}$£¬ÆäÖÐa¡ÊR£®
£¨1£©Èôa£¼0£¬ÊÔÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©¼Çº¯Êýg£¨x£©=f£¨x£©+£¨2a-3£©lnx-$\frac{3a+4}{x}$£¬Èôg£¨x£©ÔÚÇø¼ä[1£¬4]Éϲ»µ¥µ÷£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªËæ»ú±äÁ¿X¡«B£¨10£¬0.6£©£¬Ôò±äÁ¿Y=3X+2µÄÆÚÍûºÍ·½²î·Ö±ðΪ£¨¡¡¡¡£©
A£®8£¬2.4B£®8£¬21.6C£®20£¬2.4D£®20£¬21.6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýf£¨x£©=6+12x-x3ÔÚ[-1£¬3]ÉϵÄ×î´óÖµÓë×îСֵ֮ºÍΪ£¨¡¡¡¡£©
A£®10B£®12C£®17D£®19

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=x3+$\frac{3}{2}$x2+mxÔÚx=1´¦Óм«Ð¡Öµ£¬g£¨x£©=f£¨x£©-$\frac{2}{3}$x3-$\frac{3}{4}$x2+x-alnx£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâµÄx1¡¢x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx1¡Ùx2£¬ÓÐ$\frac{g£¨{x}_{1}£©-g£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¾1ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öaµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÉèÇúÏßy=ax+ln£¨x+1£©Ôڵ㣨0£¬0£©´¦µÄÇÐÏß·½³ÌΪy=3x£¬Ôòa=£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º£Ë®ÊÜÈÕÔµÄÒýÁ¦£¬ÔÚÒ»¶¨µÄʱºò·¢Éú³±Õdz±Â䣬´¬Ö»Ò»°ãÕdz±Ê±½ø¸Ûж»õ£¬Â䳱ʱ³ö¸Ûº½ÐУ¬Ä³´¬³ÔË®Éî¶È£¨´¬µ×ÓëË®Ãæ¾àÀ룩Ϊ4Ã×£¬°²È«¼ä϶£¨´¬µ×Ó뺣µ×¾àÀ룩Ϊ1.5Ã×£¬¸Ã´¬ÔÚ2£º00¿ªÊ¼Ð¶»õ£¬³ÔË®Éî¶ÈÒÔ0.3Ã×/ʱµÄËٶȼõÉÙ£¬¸Ã¸Û¿Úij¼¾½ÚÿÌ켸¸öʱ¿ÌµÄË®ÉîÈçϱíËùʾ£¬ÈôÑ¡Ôñy=Asin£¨¦Øx+¦Õ£©+K£¨A£¾0£¬¦Ø£¾0£©ÄâºÏ¸Ã¸Û¿ÚË®ÉîÓëʱ¼äµÄº¯Êý¹ØÏµ£¬Ôò¸Ã´¬±ØÐëֹͣж»õÊ»Àë¸Û¿ÚµÄʱ¼ä´ó¸Å¿ØÖÆÔÚ£¨Òª¿¼ÂÇ´¬Ö»Ê»³ö¸Û¿ÚÐèÒªÒ»¶¨Ê±¼ä£©£¨¡¡¡¡£©
ʱ¿Ì0£º003£º006£º009£º0012£º0015£º0018£º0021£º0024£º00
Ë®Éî5.07.55.02.55.07.55.02.55.0
A£®5£º00ÖÁ5£º30B£®5£º30ÖÁ6£º00C£®6£º00ÖÁ6£º30D£®6£º30ÖÁ7£º00

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÑĮ̀ˮ¹ûÒÔ¡°ÆÜϼƻ¹û¡¢À³ÑôÀæ¡¢¸£É½´óÓ£ÌÒ¡±ÎÅÃû£¬ÏÖ´ÓÊÐÅ©¿ÆÔºÅàÓýµÄÓ£ÌÒÊ÷ÃçÖÐËæ»ú³éÈ¡100¿Ã×÷ΪÑù±¾£¬²âµÃÕâЩÊ÷ÃçµÄÖê¸ß£¨µ¥Î»£ºcm£©²¢»æÖÆÆµÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ
£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼¿ÉÈÏΪ£¬ÕâЩӣÌÒÊ÷Ê÷ÃçµÄÖê¸ßX·þ´ÓÕý̬·Ö²¼
N£¨¦Ì£¬¦Ò2£©£¬ÆäÖЦ̽üËÆÎªÑù±¾Æ½¾ùÊý$\overline{x}$£¬¦Ò½üËÆÎªÑù±¾·½²îs2£¬ÀûÓøÃÕý̬·Ö²¼£¬ÇóP£¨79.5£¼X£¼104.5£©
£¨2£©Ä³¹ûÅ©ÂòÁË20¿ÃÕâÖÖ™ÑÌÒÊ÷Ã磬¼Ç¦Î±íʾÕâ20¿ÃÊ÷ÃçÖê¸ßλÓÚÇø¼ä£¨79.5 104.5£©µÄ¿ÃÊý£¬ÀûÓã¨1£©µÄ½á¹û£¬ÇóE¦Î£¨½á¹û±£ÁôÕûÊý£©
£¨3£©ÈôÖê¸ßλÓÚÇø¼ä£¨79.5£¬104.5£©µÄÊ÷ÃçÊÓΪ¡°ÓÅÁ¼¡±£¬²¢ÒÔ£¨2£©ÖеÄE¦ÎΪ¡°ÓÅÁ¼¡±¿ÃÊý£®´ÓÕâ20¿ÃÊ÷ÃçÖÐÈÎÈ¡3¿Ã£¬¼Ç¦ÇΪ¡°ÓÅÁ¼¡±µÄ¿ÃÊý£¬Çó¦ÇµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
¸½£º$\sqrt{39}$¡Ö6.25£¬ÈôZ¡«N£¨¦Ì£¬¦Ò2£©£¬ÔòP£¨¦Ì-¦Ò£¼Z£¼¦Ì+¦Ò£©=0.6827£¬P£¨¦Ì-2¦Ò£¼Z£¼¦Ì+2¦Ò£©=0.9545£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸