·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º2a=4£¬2a+2c=4+2$\sqrt{3}$£¬a2=b2+c2£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÓÉÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+m£¨m¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬»¯Îª£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬¡÷£¾0£®ÓÉÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬¿ÉµÃ$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=k2£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃk2£®ÀûÓÃ|AB|=$\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÔµãOµ½Ö±ÏßABµÄ¾àÀëd£¬¿ÉµÃS¡÷OAB=$\frac{1}{2}$|AB|•d£¬¼°Æä»ù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º2a=4£¬2a+2c=4+2$\sqrt{3}$£¬a2=b2+c2£¬
½âµÃa=2£¬c=$\sqrt{3}$£¬b=1£¬
¡àÍÖÔ²·½³ÌC£º$\frac{{x}^{2}}{4}$+y2=1£®
£¨2£©ÓÉÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+m£¨m¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬»¯Îª£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬
ÓÉ¡÷=64k2m2-4£¨1+4k2£©£¨4m2-4£©£¾0£¬¿ÉµÃ£º1+4k2£¾m2£®
¡àx1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$£¬
¡ßÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬
¡à$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=k2£¬
¡à£¨kx1+m£©£¨kx2+m£©=k2x1x2£¬
¡àmk£¨x1+x2£©+m2=0£¬
¡à-$\frac{8km}{1+4{k}^{2}}$¡Ák+m=0£¬¿ÉµÃk2=$\frac{1}{4}$£®
½âµÃk=$¡À\frac{1}{2}$£®
¡à|AB|=$\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{£¨1+{k}^{2}£©[\frac{64{k}^{2}{m}^{2}}{£¨1+4{k}^{2}£©^{2}}-4¡Á\frac{4{m}^{2}-4}{1+4{k}^{2}}]}$=$\sqrt{5£¨2-{m}^{2}£©}$£®
ÔµãOµ½Ö±ÏßABµÄ¾àÀëd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬
¡àS¡÷OAB=$\frac{1}{2}$|AB|•d=$\frac{1}{2}¡Á$$\sqrt{5£¨2-{m}^{2}£©}$¡Á$\frac{|m|}{\sqrt{1+{k}^{2}}}$=|m|$•\sqrt{2-{m}^{2}}$¡Ü$\frac{{m}^{2}+2-{m}^{2}}{2}$=1£®µ±ÇÒ½öµ±|m|=1ʱȡµÈºÅ£®
¡à¡÷OABÃæ»ýµÄȡֵ·¶Î§ÊÇ£¨0£¬1]£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ð±ÂʼÆË㹫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x-y-1=0 | B£® | x-y+1=0 | C£® | x-y-5=0 | D£® | x+y-5=0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 8£¬2.4 | B£® | 8£¬21.6 | C£® | 20£¬2.4 | D£® | 20£¬21.6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 10 | B£® | 12 | C£® | 17 | D£® | 19 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| ʱ¿Ì | 0£º00 | 3£º00 | 6£º00 | 9£º00 | 12£º00 | 15£º00 | 18£º00 | 21£º00 | 24£º00 |
| Ë®Éî | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
| A£® | 5£º00ÖÁ5£º30 | B£® | 5£º30ÖÁ6£º00 | C£® | 6£º00ÖÁ6£º30 | D£® | 6£º30ÖÁ7£º00 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com