【题目】2018年8月18日,举世瞩目的第18届亚运会在印尼首都雅加达举行,为了丰富亚运会志愿者的业余生活,同时鼓励更多的有志青年加入志愿者行列,大会主办方决定对150名志愿者组织一次有关体育运动的知识竞赛(满分120分)并计划对成绩前15名的志愿者进行奖励,现将所有志愿者的竞赛成绩制成频率分布直方图,如图所示,若第三组与第五组的频数之和是第二组的频数的3倍,试回答以下问题:
(1)求图中的值;
(2)求志愿者知识竞赛的平均成绩;
(3)从受奖励的15人中按成绩利用分层抽样抽取5人,再从抽取的5人中,随机抽取2人在主会场服务,求抽取的这2人中其中一人成绩在分的概率.
【答案】(1)(2)96.8(3)
【解析】
(1)由频率分布直方图的性质结合条件即可求解;
(2)每个小长方形底边中点所对应的横坐标乘以该组的频率,再求和即可求出平均数;
(3)用列举法先求出从抽取的5人中,随机抽取2人所包含的基本事件总数,以及抽取的这2人中其中一人成绩在分所包含的基本事件个数,结合古典概型的概率公式即可求出概率.
(1)由条件及频率分别直方图的性质可知:
解得
(2)由(1)可知,成绩在分的有9人,在分的有24人,
在分的有60人,在分的有45人,
在分的有12人,故志愿者知识竞赛平均成绩为
(3)由(2)可知,受奖励的15人中有三人的成绩是分,其余12人的成绩是分,利用分层抽样抽取5人,有1人成绩在分中,4人成绩在分中.
记成绩是分的1人为,成绩是分的4人为,从这5人中抽取2人去主会场服务共有以下10种可能:,,,,,,,,,,
满足条件的有,,,,共4种,
故所求概率.
科目:高中数学 来源: 题型:
【题目】已知函数,g(x)=f(x)﹣3.
(1)判断并证明函数g(x)的奇偶性;
(2)判断并证明函数g(x)在(1,+∞)上的单调性;
(3)若f(m2﹣2m+7)≥f(2m2﹣4m+4)成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构为了解某地区中学生在校月消费情况,随机抽取了 100名中学生进行调查.如图是根据调査的结果绘制的学生在校月消费金额的频率分布直方图.已知三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.
(1)求的值,并求这100名学生月消费金额的样本平均数 (同一组中的数据用该组区间的中点值作代表);
(2)根据已知条件完成下面列联表,并判断能否有的把握认为“高消费群”与性别有关?
附: (其中样本容量)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,满足Sn=2an-1(n∈N*),数列{bn}满足nbn+1-(n+1)bn=n(n+1)(n∈N*),且b1=1.
(1)证明数列{}为等差数列,并求数列{an}和{bn}的通项公式;
(2)若cn=(-1)n-1,求数列{cn}的前n项和T2n;
(3)若dn=an,数列{dn}的前n项和为Dn,对任意的n∈N*,都有Dn≤nSn-a,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集与,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,不可能成立的是()
A.没有最大元素, 有一个最小元素B.没有最大元素, 也没有最小元素
C.有一个最大元素, 有一个最小元素D.有一个最大元素, 没有最小元素
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是.
(1)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?
(2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过市场调查,得到某种产品的资金投入x(单位:万元)与获得的利润y(单位:万元)的数据,如表所示:
资金投入x | 2 | 3 | 4 | 5 | 6 |
利润y | 2 | 3 | 5 | 6 | 9 |
(1)画出数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程;
(3)现投入资金10万元,求获得利润的估计值为多少万元?
参考公式:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com