精英家教网 > 高中数学 > 题目详情
已知点P(m,n)是直线2x+y+5=0上的任意一点,则
(m-1)2+(n+2)2
的最小值为(  )
A、5
B、
8
5
5
C、
5
D、
5
5
考点:点到直线的距离公式
专题:直线与圆
分析:由已知得
(m-1)2+(n+2)2
的最小值是点(1,-2)到直线2x+y+5=0的距离,由此能求出结果.
解答: 解:∵点P(m,n)是直线2x+y+5=0上的任意一点,
(m-1)2+(n+2)2
的最小值是点(1,-2)到直线2x+y+5=0的距离,
(m-1)2+(n+2)2
的最小值d=
|2-2+5|
4+1
=
5

故选:C.
点评:本题考查代数式的最小值的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax-b(b≠0)有一个零点2,则函数g(x)=bx2+2ax的零点是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=mx2+2x+10在[4,5]上是增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个椭圆中心在原点,对称轴为坐标轴,焦点在x轴上,短轴的一个顶点B与两个焦点F1,F2组成的三角形的周长为4+2
3
,且∠F1BF2=
3

(1)求这个椭圆的方程;
(2)斜率为1的直线交椭圆C于A、B两点,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球.
(1)用列表或画树状图的方法列出所有可能结果;
(2)设第一次取出的球号码为x,第二次取出的球号码为y,求事件A=“点(x,y)落在直线y=x+1上方”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
4
+
y2
b2
=1(b<2)的准线方程为
a2
c
=4,其焦点为F1,F2,若椭圆上一点P满足∠F1PF2=60°,则SF1PF2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中角A,B,C的对边分别为a,b,c,且
3
sinA-cosA=1.
(1)求角A的大小;
(2)若a=2,cosB=
3
3
,求b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x2
4
-
y2
6
=1的左、右顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是(  )
A、[-1,-
3
4
]
B、[-
3
4
,-
3
8
]
C、[-1,-
1
2
]
D、[-
3
4
,-
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),当x≥0时,f(x)=
log2(x+1),x∈[0,3)
x2-10x+23,x∈[3,+∞)
,则关于x的函数g(x)=f(x)+a(0<a<2)的所有零点之和为
 
.(用含a的式子表达)

查看答案和解析>>

同步练习册答案