分析 (1)由题意可得4Sn=(an+1)2,当n≥2时,Sn-Sn-1=an,4Sn=(an+1)2,①,n换为n-1可得4Sn-1=(an-1+1)2,②作差,化简整理可得an-an-1=2,{an}是等差数列,公差是2,求出a1,a2,可得所求通项公式;
(2)求得bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用数列的求和方法:裂项相消求和,化简整理即可得到所求和.
解答 解:(1)由an=2$\sqrt{{S}_{n}}$-1,可得:
4Sn=(an+1)2,①
当n≥2时,Sn-Sn-1=an,
n换为n-1可得4Sn-1=(an-1+1)2,②
①-②可得4an=(an+1)2-(an-1+1)2,
化为(an+an-1)(an-an-1-2)=0,
由题意得到an-an-1=2,
∴{an}是等差数列,公差是2,
2$\sqrt{{a}_{1}}$=a1+1,求得a1=1,
故数列{an}的通项公式an=2n-1;
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
可得数列{bn}的前n项和为$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.
点评 本题考查数列的通项公式的求法,注意运用数列的递推式,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | c>a>b | B. | c>b>a | C. | a>c>b | D. | a>b>c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2}∪[2,+∞) | B. | (-∞,-2]∪[2,+∞) | C. | [2,+∞) | D. | {0}∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | 1008 | C. | 504 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com