精英家教网 > 高中数学 > 题目详情
3.已知正项数列{an},其前n项和为Sn,且an=2$\sqrt{{S}_{n}}$-1.
(1)求数列{an}的通项公式;
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和.

分析 (1)由题意可得4Sn=(an+1)2,当n≥2时,Sn-Sn-1=an,4Sn=(an+1)2,①,n换为n-1可得4Sn-1=(an-1+1)2,②作差,化简整理可得an-an-1=2,{an}是等差数列,公差是2,求出a1,a2,可得所求通项公式;
(2)求得bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用数列的求和方法:裂项相消求和,化简整理即可得到所求和.

解答 解:(1)由an=2$\sqrt{{S}_{n}}$-1,可得:
4Sn=(an+1)2,①
当n≥2时,Sn-Sn-1=an
n换为n-1可得4Sn-1=(an-1+1)2,②
①-②可得4an=(an+1)2-(an-1+1)2
化为(an+an-1)(an-an-1-2)=0,
由题意得到an-an-1=2,
∴{an}是等差数列,公差是2,
2$\sqrt{{a}_{1}}$=a1+1,求得a1=1,
故数列{an}的通项公式an=2n-1;
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
可得数列{bn}的前n项和为$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.

点评 本题考查数列的通项公式的求法,注意运用数列的递推式,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是(  )
A.c>a>bB.c>b>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\sqrt{3}$ccos A=(2b-$\sqrt{3}$a)cosC.
(1)求角C;
(2)若A=$\frac{π}{6}$,△ABC的面积为$\sqrt{3}$,D为AB的中点,求sin∠BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在实数集R中,已知集合A={x|$\sqrt{{x^2}-4}$≥0}和集合B={x||x-1|+|x+1|≥2},则A∩B=(  )
A.{-2}∪[2,+∞)B.(-∞,-2]∪[2,+∞)C.[2,+∞)D.{0}∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若双曲线的焦点到渐近线的距离是焦距的$\frac{\sqrt{5}}{5}$,则该双曲线的离心率为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.关于x的不等式组$\left\{{\begin{array}{l}{{x^2}-x-2>0}\\{2{x^2}+(2k+5)x+5k<0}\end{array}}\right.$的解集为A,若集合A中有且仅有一个整数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xoy中,点P是直线3x+4y+3=0上的动点,过点P作圆C:x2+y2-2x-2y+1=0的两条切线,切点分别是A,B,则|AB|的取值范围为[$\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{x}{2x-1}$+cos(x-$\frac{π+1}{2}$),则$\sum_{k=1}^{2016}$$f(\frac{k}{2017})$的值为(  )
A.2016B.1008C.504D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,抛物线E:x2=4y的焦点F是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一个顶点.过点F且斜率为k(k≠0)的直线l交椭圆C于另一点D,交抛物线E于A、B两点,线段DF的中点为M,直线OM交椭圆C于P、Q两点,记直线OM的斜率为k',满足$k•k'=-\frac{1}{4}$.
(1)求椭圆C的方程;
(2)记△PDF的面积为S1,△QAB的面积为S2,设${S_1}•{S_2}=λ{k^2}$,求实数λ的最大值及取得最大值时直线l的方程.

查看答案和解析>>

同步练习册答案