·ÖÎö £¨1£©ÓÉÌâÒâÉè³öÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬Çó³öDµÄ×ø±ê£¬ÀûÓÃÖеã×ø±ê¹«Ê½ÇóµÃMµÄ×ø±ê£¬µÃµ½OMµÄбÂʽáºÏÒÑÖªÇóµÃaÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÓÉ£¨1£©£¬ÖªµãDµÄ×ø±êΪ£¨$-\frac{8k}{1+4{k}^{2}}£¬\frac{1-4{k}^{2}}{1+4{k}^{2}}$£©£¬ÓÖF£¨0£¬1£©£¬¿ÉµÃ|DF|£®ÓÉ$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=kx+1}\end{array}\right.$£¬ÀûÓÃÏÒ³¤¹«Ê½ÇóµÃ|AB|£®Çó³öÖ±ÏßOMµÄ·½³ÌΪy=-$\frac{1}{4k}x$£®ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=-\frac{1}{4k}x}\end{array}\right.$£¬ÇóµÃP¡¢QµÄ×ø±ê£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇóµÃµãPµ½Ö±Ïßkx-y+1=0µÄ¾àÀë${d}_{1}=\frac{||k|•\sqrt{1+4{k}^{2}}+k|}{|k|•\sqrt{1+{k}^{2}}}$£¬µãQµ½Ö±Ïßkx-y+1=0µÄ¾à${d}_{2}=\frac{||k|•\sqrt{1+4{k}^{2}}-k|}{|k|•\sqrt{1+{k}^{2}}}$£®´úÈëÈý½ÇÐÎÃæ»ý¹«Ê½£¬ÕûÀíºóÀûÓûù±¾²»µÈʽÇóµÃʵÊý¦ËµÄ×î´óÖµ¼°È¡µÃ×î´óֵʱֱÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬![]()
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+a2k2£©x2+2a2kx=0£®
½âµÃ£º${x}_{D}=-\frac{2{a}^{2}k}{1+{a}^{2}{k}^{2}}$£¬${y}_{D}=\frac{1-{a}^{2}{k}^{2}}{1+{a}^{2}{k}^{2}}$£®
¡àM£¨$-\frac{{a}^{2}k}{1+{a}^{2}{k}^{2}}$£¬$\frac{1}{1+{a}^{2}{k}^{2}}$£©£¬Ôòk¡ä=${k}_{OM}=-\frac{1}{{a}^{2}k}$£¬
ÓÉ$k•k'=-\frac{1}{4}$£¬µÃ$k¡ä•k=-\frac{1}{{a}^{2}}=-\frac{1}{4}$£®
¡àa2=4£®
ÔòÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÓÉ£¨1£©£¬ÖªµãDµÄ×ø±êΪ£¨$-\frac{8k}{1+4{k}^{2}}£¬\frac{1-4{k}^{2}}{1+4{k}^{2}}$£©£¬ÓÖF£¨0£¬1£©£¬
¡à|DF|=$\sqrt{£¨-\frac{8k}{1+4{k}^{2}}£©^{2}+£¨\frac{1-4{k}^{2}}{1+4{k}^{2}}-1£©^{2}}=\frac{8|k|\sqrt{1+{k}^{2}}}{1+4{k}^{2}}$£®
ÓÉ$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=kx+1}\end{array}\right.$£¬µÃx2-4kx-4=0£®
¡÷=16k2+16£¾0ºã³ÉÁ¢£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=4k£¬x1x2=-4£®
Òò´Ë$|AB|=\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{£¨1+{k}^{2}£©£¨16{k}^{2}+16£©}=4£¨{k}^{2}+1£©$£®
ÓÉÌâÒ⣬ֱÏßOMµÄ·½³ÌΪy=-$\frac{1}{4k}x$£®
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=-\frac{1}{4k}x}\end{array}\right.$£¬µÃ£¨1+4k2£©x2-16k2=0£®
ÏÔÈ»£¬¡÷=-4£¨1+4k2£©£¨-16k2£©£¾0ºã³ÉÁ¢£¬ÇÒx=$¡À\frac{4|k|}{\sqrt{1+4{k}^{2}}}$£®
²»·ÁÉè${x}_{P}=\frac{4|k|}{\sqrt{1+4{k}^{2}}}$£¬Ôò${y}_{P}=-\frac{1}{4k}{x}_{P}=£¨-\frac{1}{4k}£©•\frac{4|k|}{\sqrt{1+4{k}^{2}}}=-\frac{|k|}{k•\sqrt{1+4{k}^{2}}}$£®
¡àµãPµÄ×ø±êΪ£¨$\frac{4|k|}{\sqrt{1+4{k}^{2}}}£¬-\frac{|k|}{k•\sqrt{1+4{k}^{2}}}$£©£¬¶øµãQµÄ×ø±êΪ£¨$-\frac{4|k|}{\sqrt{1+4{k}^{2}}}£¬\frac{|k|}{k•\sqrt{1+4{k}^{2}}}$£©£®
µãPµ½Ö±Ïßkx-y+1=0µÄ¾àÀë${d}_{1}=\frac{||k|•\sqrt{1+4{k}^{2}}+k|}{|k|•\sqrt{1+{k}^{2}}}$£¬
µãQµ½Ö±Ïßkx-y+1=0µÄ¾àÀë${d}_{2}=\frac{||k|•\sqrt{1+4{k}^{2}}-k|}{|k|•\sqrt{1+{k}^{2}}}$£®
¡à${S}_{1}=\frac{1}{2}•|DF|•{d}_{1}=\frac{1}{2}•\frac{8|k|\sqrt{1+{k}^{2}}}{1+4{k}^{2}}•\frac{||k|•\sqrt{1+4{k}^{2}}+k|}{|k|•\sqrt{1+{k}^{2}}}$=$\frac{4||k|•\sqrt{1+4{k}^{2}}+k|}{1+4{k}^{2}}$£®
${S}_{2}=\frac{1}{2}•|AB|•{d}_{2}$=$\frac{1}{2}•4£¨{k}^{2}+1£©•\frac{||k|•\sqrt{1+4{k}^{2}}-k|}{|k|•\sqrt{1+{k}^{2}}}$=$\frac{2\sqrt{{k}^{2}+1}•||k|•\sqrt{1+4{k}^{2}}-k|}{|k|}$£®
¡àS1S2=$\frac{8\sqrt{{k}^{2}+1}|{k}^{2}£¨1+4{k}^{2}£©-{k}^{2}|}{£¨1+4{k}^{2}£©|k|}=\frac{32{k}^{4}\sqrt{{k}^{2}+1}}{£¨1+4{k}^{2}£©|k|}$=$\frac{32{k}^{2}|k|\sqrt{{k}^{2}+1}}{1+4{k}^{2}}$£®
¡ß${S_1}•{S_2}=¦Ë{k^2}$£¬
¡à$¦Ë=\frac{32|k|\sqrt{{k}^{2}+1}}{1+4{k}^{2}}$=$\frac{16}{\sqrt{3}}•\frac{2\sqrt{3{k}^{2}}•\sqrt{{k}^{2}+1}}{1+4{k}^{2}}¡Ü\frac{16}{\sqrt{3}}•\frac{3{k}^{2}+£¨{k}^{2}+1£©}{1+4{k}^{2}}$=$\frac{16\sqrt{3}}{3}$£®
µ±ÇÒ½öµ±3k2=k2+1£¬¼´k=$¡À\frac{\sqrt{2}}{2}$ʱ£¬µÈºÅ³ÉÁ¢£®
¡àʵÊý¦ËµÄ×î´óֵΪ$\frac{16\sqrt{3}}{3}$£¬¦ËÈ¡×î´óֵʱµÄÖ±Ïß·½³ÌΪ$y=¡À\frac{\sqrt{2}}{2}x+1$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖÔ²¡¢Å×ÎïÏßλÖùØÏµµÄÓ¦Ó㬿¼²éÂß¼ÍÆÀíÄÜÁ¦ÓëÔËËãÄÜÁ¦£¬ÊôѹÖáÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èç¹ûm¡În£¬¦Á¡Î¦Â£¬ÄÇômÓë¦ÁËù³ÉµÄ½ÇºÍnÓë¦ÂËù³ÉµÄ½ÇÏàµÈ | |
| B£® | Èç¹ûm¡Ín£¬m¡Í¦Á£¬n¡Î¦Â£¬ÄÇô¦Á¡Í¦Â | |
| C£® | Èç¹û¦Á¡Î¦Â£¬m?¦Á£¬ÄÇôm¡Î¦Â | |
| D£® | Èç¹ûm¡Í¦Á£¬n¡Î¦Á£¬ÄÇôm¡Ín |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | s1£¾s2£¾s3 | B£® | s1£¾s3£¾s2 | C£® | s3£¾s2£¾s1 | D£® | s3£¾s1£¾s2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ÉÆÓÚʹÓÃѧ°¸ | ²»ÉÆÓÚʹÓÃѧ°¸ | ×Ü¼Æ | |
| ѧϰ³É¼¨ÓÅÐã | 40 | ||
| ѧϰ³É¼¨Ò»°ã | 30 | ||
| ×Ü¼Æ | 100 |
| P£¨K2¡Ýk0£© | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{\sqrt{6}}}{4}$ | B£® | $\frac{{\sqrt{10}}}{4}$ | C£® | $\frac{{\sqrt{15}}}{5}$ | D£® | $\frac{9}{10}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com