13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßE£ºx2=4yµÄ½¹µãFÊÇÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄÒ»¸ö¶¥µã£®¹ýµãFÇÒбÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚÁíÒ»µãD£¬½»Å×ÎïÏßEÓÚA¡¢BÁ½µã£¬Ïß¶ÎDFµÄÖеãΪM£¬Ö±ÏßOM½»ÍÖÔ²CÓÚP¡¢QÁ½µã£¬¼ÇÖ±ÏßOMµÄбÂÊΪk'£¬Âú×ã$k•k'=-\frac{1}{4}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¼Ç¡÷PDFµÄÃæ»ýΪS1£¬¡÷QABµÄÃæ»ýΪS2£¬Éè${S_1}•{S_2}=¦Ë{k^2}$£¬ÇóʵÊý¦ËµÄ×î´óÖµ¼°È¡µÃ×î´óֵʱֱÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©ÓÉÌâÒâÉè³öÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬Çó³öDµÄ×ø±ê£¬ÀûÓÃÖеã×ø±ê¹«Ê½ÇóµÃMµÄ×ø±ê£¬µÃµ½OMµÄбÂʽáºÏÒÑÖªÇóµÃaÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÓÉ£¨1£©£¬ÖªµãDµÄ×ø±êΪ£¨$-\frac{8k}{1+4{k}^{2}}£¬\frac{1-4{k}^{2}}{1+4{k}^{2}}$£©£¬ÓÖF£¨0£¬1£©£¬¿ÉµÃ|DF|£®ÓÉ$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=kx+1}\end{array}\right.$£¬ÀûÓÃÏÒ³¤¹«Ê½ÇóµÃ|AB|£®Çó³öÖ±ÏßOMµÄ·½³ÌΪy=-$\frac{1}{4k}x$£®ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=-\frac{1}{4k}x}\end{array}\right.$£¬ÇóµÃP¡¢QµÄ×ø±ê£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇóµÃµãPµ½Ö±Ïßkx-y+1=0µÄ¾àÀë${d}_{1}=\frac{||k|•\sqrt{1+4{k}^{2}}+k|}{|k|•\sqrt{1+{k}^{2}}}$£¬µãQµ½Ö±Ïßkx-y+1=0µÄ¾à${d}_{2}=\frac{||k|•\sqrt{1+4{k}^{2}}-k|}{|k|•\sqrt{1+{k}^{2}}}$£®´úÈëÈý½ÇÐÎÃæ»ý¹«Ê½£¬ÕûÀíºóÀûÓûù±¾²»µÈʽÇóµÃʵÊý¦ËµÄ×î´óÖµ¼°È¡µÃ×î´óֵʱֱÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+a2k2£©x2+2a2kx=0£®
½âµÃ£º${x}_{D}=-\frac{2{a}^{2}k}{1+{a}^{2}{k}^{2}}$£¬${y}_{D}=\frac{1-{a}^{2}{k}^{2}}{1+{a}^{2}{k}^{2}}$£®
¡àM£¨$-\frac{{a}^{2}k}{1+{a}^{2}{k}^{2}}$£¬$\frac{1}{1+{a}^{2}{k}^{2}}$£©£¬Ôòk¡ä=${k}_{OM}=-\frac{1}{{a}^{2}k}$£¬
ÓÉ$k•k'=-\frac{1}{4}$£¬µÃ$k¡ä•k=-\frac{1}{{a}^{2}}=-\frac{1}{4}$£®
¡àa2=4£®
ÔòÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÓÉ£¨1£©£¬ÖªµãDµÄ×ø±êΪ£¨$-\frac{8k}{1+4{k}^{2}}£¬\frac{1-4{k}^{2}}{1+4{k}^{2}}$£©£¬ÓÖF£¨0£¬1£©£¬
¡à|DF|=$\sqrt{£¨-\frac{8k}{1+4{k}^{2}}£©^{2}+£¨\frac{1-4{k}^{2}}{1+4{k}^{2}}-1£©^{2}}=\frac{8|k|\sqrt{1+{k}^{2}}}{1+4{k}^{2}}$£®
ÓÉ$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=kx+1}\end{array}\right.$£¬µÃx2-4kx-4=0£®
¡÷=16k2+16£¾0ºã³ÉÁ¢£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=4k£¬x1x2=-4£®
Òò´Ë$|AB|=\sqrt{£¨1+{k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{£¨1+{k}^{2}£©£¨16{k}^{2}+16£©}=4£¨{k}^{2}+1£©$£®
ÓÉÌâÒ⣬ֱÏßOMµÄ·½³ÌΪy=-$\frac{1}{4k}x$£®
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=-\frac{1}{4k}x}\end{array}\right.$£¬µÃ£¨1+4k2£©x2-16k2=0£®
ÏÔÈ»£¬¡÷=-4£¨1+4k2£©£¨-16k2£©£¾0ºã³ÉÁ¢£¬ÇÒx=$¡À\frac{4|k|}{\sqrt{1+4{k}^{2}}}$£®
²»·ÁÉè${x}_{P}=\frac{4|k|}{\sqrt{1+4{k}^{2}}}$£¬Ôò${y}_{P}=-\frac{1}{4k}{x}_{P}=£¨-\frac{1}{4k}£©•\frac{4|k|}{\sqrt{1+4{k}^{2}}}=-\frac{|k|}{k•\sqrt{1+4{k}^{2}}}$£®
¡àµãPµÄ×ø±êΪ£¨$\frac{4|k|}{\sqrt{1+4{k}^{2}}}£¬-\frac{|k|}{k•\sqrt{1+4{k}^{2}}}$£©£¬¶øµãQµÄ×ø±êΪ£¨$-\frac{4|k|}{\sqrt{1+4{k}^{2}}}£¬\frac{|k|}{k•\sqrt{1+4{k}^{2}}}$£©£®
µãPµ½Ö±Ïßkx-y+1=0µÄ¾àÀë${d}_{1}=\frac{||k|•\sqrt{1+4{k}^{2}}+k|}{|k|•\sqrt{1+{k}^{2}}}$£¬
µãQµ½Ö±Ïßkx-y+1=0µÄ¾àÀë${d}_{2}=\frac{||k|•\sqrt{1+4{k}^{2}}-k|}{|k|•\sqrt{1+{k}^{2}}}$£®
¡à${S}_{1}=\frac{1}{2}•|DF|•{d}_{1}=\frac{1}{2}•\frac{8|k|\sqrt{1+{k}^{2}}}{1+4{k}^{2}}•\frac{||k|•\sqrt{1+4{k}^{2}}+k|}{|k|•\sqrt{1+{k}^{2}}}$=$\frac{4||k|•\sqrt{1+4{k}^{2}}+k|}{1+4{k}^{2}}$£®
${S}_{2}=\frac{1}{2}•|AB|•{d}_{2}$=$\frac{1}{2}•4£¨{k}^{2}+1£©•\frac{||k|•\sqrt{1+4{k}^{2}}-k|}{|k|•\sqrt{1+{k}^{2}}}$=$\frac{2\sqrt{{k}^{2}+1}•||k|•\sqrt{1+4{k}^{2}}-k|}{|k|}$£®
¡àS1S2=$\frac{8\sqrt{{k}^{2}+1}|{k}^{2}£¨1+4{k}^{2}£©-{k}^{2}|}{£¨1+4{k}^{2}£©|k|}=\frac{32{k}^{4}\sqrt{{k}^{2}+1}}{£¨1+4{k}^{2}£©|k|}$=$\frac{32{k}^{2}|k|\sqrt{{k}^{2}+1}}{1+4{k}^{2}}$£®
¡ß${S_1}•{S_2}=¦Ë{k^2}$£¬
¡à$¦Ë=\frac{32|k|\sqrt{{k}^{2}+1}}{1+4{k}^{2}}$=$\frac{16}{\sqrt{3}}•\frac{2\sqrt{3{k}^{2}}•\sqrt{{k}^{2}+1}}{1+4{k}^{2}}¡Ü\frac{16}{\sqrt{3}}•\frac{3{k}^{2}+£¨{k}^{2}+1£©}{1+4{k}^{2}}$=$\frac{16\sqrt{3}}{3}$£®
µ±ÇÒ½öµ±3k2=k2+1£¬¼´k=$¡À\frac{\sqrt{2}}{2}$ʱ£¬µÈºÅ³ÉÁ¢£®
¡àʵÊý¦ËµÄ×î´óֵΪ$\frac{16\sqrt{3}}{3}$£¬¦ËÈ¡×î´óֵʱµÄÖ±Ïß·½³ÌΪ$y=¡À\frac{\sqrt{2}}{2}x+1$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖÔ²¡¢Å×ÎïÏßλÖùØÏµµÄÓ¦Ó㬿¼²éÂß¼­ÍÆÀíÄÜÁ¦ÓëÔËËãÄÜÁ¦£¬ÊôѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÕýÏîÊýÁÐ{an}£¬ÆäǰnÏîºÍΪSn£¬ÇÒan=2$\sqrt{{S}_{n}}$-1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÈçͼÊÇijÆóÒµ2010ÄêÖÁ2016ÄêÎÛË®¾»»¯Á¿£¨µ¥Î»£º¶Ö£©µÄÕÛÏßͼ£®

×¢£ºÄê·Ý´úÂë1¡«7·Ö±ð¶ÔÓ¦Äê·Ý2010¡«2016£®
£¨1£©ÓÉÕÛÏßͼ¿´³ö£¬¿ÉÓÃÏßÐԻعéÄ£ÐÍÄâºÏyºÍtµÄ¹ØÏµ£¬ÇëÓÃÏà¹ØÏµÊý¼ÓÒÔ˵Ã÷£»
£¨2£©½¨Á¢y¹ØÓÚtµÄ»Ø¹é·½³Ì£¬Ô¤²â2017Äê¸ÃÆóÒµÎÛË®¾»»¯Á¿£»
£¨3£©ÇëÓÃÊý¾Ý˵Ã÷»Ø¹é·½³ÌÔ¤±¨µÄЧ¹û£®
¸½×¢£º²Î¿¼Êý¾Ý£º$\overline{y}$=54£¬$\sum_{i=1}^{7}$£¨ti-$\overline{t}$£©£¨yi-$\overline{y}$£©=21£¬$\sqrt{14}$¡Ö3.74£¬$\sum_{i=1}^{7}$£¨yi-$\stackrel{¡Ä}{{y}_{i}}$ £©2=$\frac{9}{4}$£®
²Î¿¼¹«Ê½£ºÏà¹ØÏµÊýr=$\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sqrt{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}\sum_{i=1}^{n}£¨{y}_{i}-\overline{y}£©^{2}}}$£¬»Ø¹é·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{a}$+$\stackrel{¡Ä}{b}$tÖÐбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ¹«Ê½·Ö±ðΪ$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{t}$£®
·´Ó³»Ø¹éЧ¹ûµÄ¹«Ê½ÎªR2=1-$\frac{\sum_{i=1}^{n}£¨{y}_{i}-\stackrel{¡Ä}{{y}_{i}}£©^{2}}{\sum_{i=1}^{n}£¨{y}_{i}-\overline{y}£©^{2}}$£¬ÆäÖÐR2Ô½½Ó½üÓÚ1£¬±íʾ»Ø¹éµÄЧ¹ûÔ½ºÃ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èô¦Á£¬¦ÂÊÇÁ½¸ö²»Í¬Æ½Ã棬m£¬nÊÇÁ½Ìõ²»Í¬Ö±Ïߣ¬ÔòÏÂÁнáÂÛ´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®Èç¹ûm¡În£¬¦Á¡Î¦Â£¬ÄÇômÓë¦ÁËù³ÉµÄ½ÇºÍnÓë¦ÂËù³ÉµÄ½ÇÏàµÈ
B£®Èç¹ûm¡Ín£¬m¡Í¦Á£¬n¡Î¦Â£¬ÄÇô¦Á¡Í¦Â
C£®Èç¹û¦Á¡Î¦Â£¬m?¦Á£¬ÄÇôm¡Î¦Â
D£®Èç¹ûm¡Í¦Á£¬n¡Î¦Á£¬ÄÇôm¡Ín

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÎªÁ˽ⱾÊоÓÃñµÄÉú»î³É±¾£¬¼×¡¢ÒÒ¡¢ÄÚÈýÃûͬѧÀûÓÃ¼ÙÆÚ·Ö±ð¶ÔÈý¸öÉçÇø½øÐÐÁË¡°¼ÒͥÿÔÂÈÕ³£Ïû·Ñ¶î¡±µÄµ÷²é£®ËûÃǽ«µ÷²éËùµÃµ½µÄÊý¾Ý·Ö±ð»æÖÆ³ÉÆµÂÊ·Ö²¼Ö±·½Í¼£¨ÈçͼËùʾ£©£¬¼×¡¢ÒÒ¡¢±ûËùµ÷²éÊý¾ÝµÄ±ê×¼²î·Ö±ðΪx1£¬x2£¬x3£¬ÔòËüÃǵĴóС¹ØÏµÎª£¨¡¡¡¡£©
A£®s1£¾s2£¾s3B£®s1£¾s3£¾s2C£®s3£¾s2£¾s1D£®s3£¾s1£¾s2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSn=2an-3n£¨n¡ÊN+£©£®
£¨1£©Çóa1£¬a2£¬a3µÄÖµ£»
£¨2£©ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ{an+¦Ë}ΪµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµºÍͨÏʽan£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®½«Ê¯×Ó°Ú³ÉÈçͼËùʾµÄÌÝÐÎÐÎ×´£¬³ÆÊýÁÐ5£¬9£¬14£¬20£¬¡­Îª¡°ÌÝÐÎÊý¡±£®¸ù¾ÝͼÐεĹ¹³É£¬´ËÊýÁеĵÚ100Ï¼´a100=5252£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ä¿Ç°£¬Ñ§°¸µ¼Ñ§Ä£Ê½ÒѾ­³ÉΪ½ÌѧÖв»¿É»òȱµÄÒ»²¿·Ö£¬ÎªÁËÁ˽âѧ°¸µÄºÏÀíʹÓÃÊÇ·ñ¶ÔѧÉúµÄÆÚÄ©¸´Ï°ÓÐ×ÅÖØÒªµÄÓ°Ï죬ÎÒÐ£Ëæ»ú³éÈ¡100ÃûѧÉú£¬¶Ôѧϰ³É¼¨ºÍѧ°¸Ê¹Óó̶ȽøÐÐÁ˵÷²é£¬Í³¼ÆÊý¾ÝÈç±íËùʾ£º
ÉÆÓÚʹÓÃѧ°¸²»ÉÆÓÚʹÓÃѧ°¸×ܼÆ
ѧϰ³É¼¨ÓÅÐã40
ѧϰ³É¼¨Ò»°ã30
×ܼÆ100
²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk0£©0.0500.0100.001
k03.8416.63510.828
ÒÑÖªËæ»ú³é²éÕâ100ÃûѧÉúÖеÄÒ»ÃûѧÉú£¬³éµ½ÉÆÓÚʹÓÃѧ°¸µÄѧÉú¸ÅÂÊÊÇ0.6£®
£¨1£©Ç뽫ÉÏ±í²¹³äÍêÕû£¨²»ÓÃд¼ÆËã¹ý³Ì£©£»
£¨2£©ÊÔÔËÓöÀÁ¢ÐÔ¼ìÑéµÄ˼Ïë·½·¨·ÖÎö£ºÓжà´óµÄ°ÑÎÕÈÏΪѧÉúµÄѧϰ³É¼¨Óë¶Ô´ýѧ°¸µÄʹÓÃ̬¶ÈÓйأ¿
£¨3£©Èô´Óѧϰ³É¼¨ÓÅÐãµÄͬѧÖÐËæ»ú³éÈ¡10È˼ÌÐøµ÷²é£¬²ÉÓúÎÖÖ·½·¨½ÏΪºÏÀí£¬ÊÔ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈýÀâÖùABC-A1B1C1µÄ²àÀâÓëµ×Ãæ´¹Ö±£¬ÇÒËùÓÐÀⳤ¾ùÏàµÈ£¬MΪA1C1µÄÖе㣬ÔòÖ±ÏßCMºÍÖ±ÏßA1BËù³É½ÇµÄÓàÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{6}}}{4}$B£®$\frac{{\sqrt{10}}}{4}$C£®$\frac{{\sqrt{15}}}{5}$D£®$\frac{9}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸