精英家教网 > 高中数学 > 题目详情
18.已知数列{an}的前n项和为Sn,且Sn=2an-3n(n∈N+).
(1)求a1,a2,a3的值;
(2)是否存在常数λ,使得{an+λ}为等比数列?若存在,求出λ的值和通项公式an,若不存在,请说明理由.

分析 (1)分别令n=1,2,3,依次计算a1,a2,a3的值;
(2)假设存在常数λ,使得{an+λ}为等比数列,则(a2+λ)2=(a1+λ)(a3+λ),从而可求得λ,再利用定义证明等比数列,得出{an+λ}的通项公式,从而得出an

解答 解:(1)当n=1时,S1=a1=2a1-3,解得a1=3,
当n=2时,S2=a1+a2=2a2-6,解得a2=9,
当n=3时,S3=a1+a2+a3=2a3-9,解得a3=21.
(2)假设{an+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),
即(9+λ)2=(3+λ)(21+λ),解得λ=3.
下面证明{an+λ}为等比数列:
∵Sn=2an-3n,∴Sn+1=2an+1-3n-3,
∴an+1=Sn+1-Sn=2an+1-2an-3,
即2an+3=an+1,∴2(an+3)=an+1+3,
∴$\frac{{a}_{n+1}+3}{{a}_{n}+3}$=2,
∴{an+3}是首项为a1+3=6,公比为2的等比数列.
∴an+3=6×2n-1
∴an=6×2n-1-3.

点评 本题考查了等比数列的性质与判断,等比数列的通项公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.关于x的不等式组$\left\{{\begin{array}{l}{{x^2}-x-2>0}\\{2{x^2}+(2k+5)x+5k<0}\end{array}}\right.$的解集为A,若集合A中有且仅有一个整数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知一空间几何体的三视图如图所示,则该几何体的体积为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点F与抛物线y2=4x的焦点重合,椭圆C上的点到F的最大距离为3.
(1)求椭圆C的方程;
(2)过椭圆C右焦点F的直线l(与x轴不重合)与椭圆C交于A、B两点,求△OAB(O为坐标原点)面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,抛物线E:x2=4y的焦点F是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一个顶点.过点F且斜率为k(k≠0)的直线l交椭圆C于另一点D,交抛物线E于A、B两点,线段DF的中点为M,直线OM交椭圆C于P、Q两点,记直线OM的斜率为k',满足$k•k'=-\frac{1}{4}$.
(1)求椭圆C的方程;
(2)记△PDF的面积为S1,△QAB的面积为S2,设${S_1}•{S_2}=λ{k^2}$,求实数λ的最大值及取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间中,下列命题正确的是(  )
A.平行于同一平面的两条直线平行B.平行于同一直线的两个平面平行
C.垂直于同一直线的两条直线平行D.垂直于同一平面的两条直线平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了响应厦门市政府“低碳生活,绿色出行”的号召,思明区委文明办率先全市发起“少开一天车,呵护厦门蓝”绿色出行活动.“从今天开始,从我做起,力争每周至少一天不开车,上下班或公务活动带头选择步行、骑车或乘坐公交车,鼓励拼车…”铿锵有力的话语,传递了绿色出行、低碳生活的理念.
某机构随机调查了本市部分成年市民某月骑车次数,统计如下:
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
18岁至31岁8122060140150
32岁至44岁12282014060150
45岁至59岁255080100225450
60岁及以上2510101852
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.用样本估计总体的思想,解决如下问题:
(Ⅰ)估计本市一个18岁以上青年人每月骑车的平均次数;
(Ⅱ)若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+c)(a+b)(b+d)(c+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx+$\frac{a}{x}({a>0})$.
(Ⅰ) 若函数f(x)有零点,求实数a的取值范围;
(Ⅱ) 证明:当a≥$\frac{2}{e}$时,f(x)>e-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知加密函数为y=ax-2(x为明文、y为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是4.

查看答案和解析>>

同步练习册答案