精英家教网 > 高中数学 > 题目详情
10.为了响应厦门市政府“低碳生活,绿色出行”的号召,思明区委文明办率先全市发起“少开一天车,呵护厦门蓝”绿色出行活动.“从今天开始,从我做起,力争每周至少一天不开车,上下班或公务活动带头选择步行、骑车或乘坐公交车,鼓励拼车…”铿锵有力的话语,传递了绿色出行、低碳生活的理念.
某机构随机调查了本市部分成年市民某月骑车次数,统计如下:
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
18岁至31岁8122060140150
32岁至44岁12282014060150
45岁至59岁255080100225450
60岁及以上2510101852
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.用样本估计总体的思想,解决如下问题:
(Ⅰ)估计本市一个18岁以上青年人每月骑车的平均次数;
(Ⅱ)若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+c)(a+b)(b+d)(c+d)}$.

分析 (Ⅰ)利用组中值,即可估计本市一个18岁以上青年人每月骑车的平均次数;
(Ⅱ)根据条件中所给的数据,列出列联表,把求得的数据代入求观测值的公式求出观测值,把观测值同临界值进行比较得到结论.

解答 解:(Ⅰ)估计本市一个18岁以上青年人每月骑车的平均次数为(20×5+40×15+40×25+200×35+200×45+300×55)÷(20+40+40+200+200+300)=42.75;
(Ⅱ)列联表:

骑行爱好者非骑行爱好者总计
青年人700100800
非青年人8002001000
总计15003001800
K2=$\frac{1800×(100×800-700×200)^{2}}{1500×300×800×1000}$=18>7.879,
∴能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关.

点评 本题考查独立性检验的应用,本题解题的关键是根据所给的数据填在列联表中,注意数据的位置不要出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知(x0,y0,z0)是关于x、y、z的方程组$\left\{\begin{array}{l}{ax+by+cz=0}\\{cx+ay+bz=0}\\{bx+cy+az=0}\end{array}$的解.
(1)求证:$|\begin{array}{l}{a}&{b}&{c}\\{c}&{a}&{b}\\{b}&{c}&{a}\end{array}|$=(a+b+c)•$|\begin{array}{l}{a}&{b}&{1}\\{c}&{a}&{1}\\{b}&{c}&{1}\end{array}|$;
(2)设z0=1,a、b、c分别为△ABC三边长,试判断△ABC的形状,并说明理由;
(3)设a、b、c为不全相等的实数,试判断“a+b+c=0”是“x02+y02+z02>0”的④条件,并证明:①充分非必要;②必要非充分;③充分且必要;④非充分非充要.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若α,β是两个不同平面,m,n是两条不同直线,则下列结论错误的是(  )
A.如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等
B.如果m⊥n,m⊥α,n∥β,那么α⊥β
C.如果α∥β,m?α,那么m∥β
D.如果m⊥α,n∥α,那么m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且Sn=2an-3n(n∈N+).
(1)求a1,a2,a3的值;
(2)是否存在常数λ,使得{an+λ}为等比数列?若存在,求出λ的值和通项公式an,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第100项,即a100=5252.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=3-t}\\{y=1+t}\end{array}$(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(Ⅰ) 求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ) 求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
善于使用学案不善于使用学案总计
学习成绩优秀40
学习成绩一般30
总计100
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)若从学习成绩优秀的同学中随机抽取10人继续调查,采用何种方法较为合理,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.${∫}_{0}^{1}$(2x+5)(x2+5x-3)10dx等于(  )
A.0B.$\frac{{3}^{11}}{11}$C.$\frac{2×{3}^{11}}{11}$D.$\frac{{2}^{11}}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|x2-4x+k=0}中只有一个元素,则实数k的值为4.

查看答案和解析>>

同步练习册答案