精英家教网 > 高中数学 > 题目详情

【题目】已知动圆与圆内切,与圆外切,记圆心的轨迹为曲线.

(1)求曲线的方程.

(2)直线与曲线交于点,点为线段的中点,若,求面积的最大值.

【答案】(1)(2)

【解析】

(1)推导出|PE|+|PF|=4>|EF|=2,从而圆心P的轨迹C为以EF为焦点的椭圆,由此能求出曲线C的方程.

(2)设直线lxmy+n,由方程组,得(4+m2y2+2mny+n2﹣4=0,由此利用韦达定理、弦长公式,结合已知条件能求出直线l的方程.

(1)设动圆的半径为,由已知得,则有

的轨迹是以为焦点的椭圆,设曲线的方程为,易知,则

∴曲线的方程为.

(2)设直线

由中点坐标公式可知.

②,

设直线轴的交点为,则点的坐标为

面积的平方

,当,即时,的面积取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在抛物线上,圆过原点且与抛物线的准线相切.

(1)求该抛物线的方程;

(2)过抛物线焦点的直线交抛物线于 两点,分别在点 处作抛物线的两条切线交于点,求三角形面积的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为 分别是棱 的中点,过直线 的平面分别与棱 交于 ,设 ,给出以下四个命题:

①四边形为平行四边形;

②若四边形面积 ,则有最小值;

③若四棱锥的体积 ,则是常函数;

④若多面体的体积 ,则为单调函数.

其中假命题为( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.

(1)U(AB);

(2)若集合C={x|2xa>0},满足BCC,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为空间中两条互相垂直的直线,等腰直角三角形的直角边所在直线与都垂直,斜边以直线为旋转轴旋转,有下列结论:

(1)当直线角时,角;

(2)当直线角时,角;

(3)直线所成角的最小值为

(4)直线所成角的最小值为

其中正确的是______(填写所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)在(-∞+∞)上有意义,且对于任意的xyR,有|fx-fy||x-y|并且函数fx+1)的对称中心是(-10),若函数gx-fx=x,则不等式g2x-x2+gx-2)<0的解集是( .

A.B.

C.,D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某校甲、乙、丙三个年级的学生志愿者人数分别是240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动。

(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?

(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作,求事件M“抽取的2名同学来自同一年级”发生的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训现分别从他们在培训期间参加的若干次预赛成绩中随机抽取记录如下:

甲:

乙:

用茎叶图表示这两组数据.

)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为派哪位学生参加合适?请说明理由

)若将频率视为概率,对甲同学在今后的三次数学竞赛成绩进行预测,记这次成绩中高于分的次数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1.

(1)求数列{an},{bn}的通项公式;

(2)设数列{cn}满足,数列{cn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案