【题目】如图所示,正方体的棱长为, , 分别是棱, 的中点,过直线, 的平面分别与棱, 交于, ,设, ,给出以下四个命题:
①四边形为平行四边形;
②若四边形面积, ,则有最小值;
③若四棱锥的体积, ,则是常函数;
④若多面体的体积, ,则为单调函数.
其中假命题为( ).
A. ① B. ② C. ③ D. ④
科目:高中数学 来源: 题型:
【题目】在平面直角坐标平面中, 的两个顶点为,平面内两点、同时满足:①;②;③.
(1)求顶点的轨迹的方程;
(2)过点作两条互相垂直的直线,直线与点的轨迹相交弦分别为,设弦的中点分别为.
①求四边形的面积的最小值;
②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租。该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= lnx-x+,其中a>0.
(1)若f(x)在(0,+∞)上存在极值点,求a的取值范围;
(2)设a∈(1,e],当x1∈(0,1),x2∈(1,+∞)时,记f(x2)-f(x1)的最大值为M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆,且点到椭圆C的两焦点的距离之和为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ) 若,是椭圆上的两个点,线段的中垂线的斜率为,且直线与交于点,求证:点在直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为,,,,,).
(1)求选取的市民年龄在内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面底面,底面是平行四边形, , , , 为的中点,点在线段上.
(Ⅰ)求证: ;
(Ⅱ)试确定点的位置,使得直线与平面所成的角和直线与平面所成的角相等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com