精英家教网 > 高中数学 > 题目详情
13.若条件p:|x+1|≤4,条件q:2<x<3,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既非充分条件也非必要条件

分析 求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.

解答 解:由|x+1|≤4得-4≤x+1≤4得-5≤x≤3,则(2,3)?[-5,3],
则p是q的必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,根据绝对值不等式的解法求出不等式的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在平行四边形ABCD中,AC与BD交于点O,F是线段DC上的点.若DC=3DF,设$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,则$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=xex.     
(1)求曲线f(x)在x=1处的切线方程;
(2)求f(x)的单调区间与极值.
(3)若方程ex=$\frac{a}{x}$有实数解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥M-ABCD中,底面ABCD为矩形,MD⊥平面ABCD,且MD=DA=1,E为MA中点.
(1)求证:DE⊥MB;
(2)若DC=2,求二面角B-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在用数学归纳法证明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$≥$\frac{13}{24}$(n≥2)的过程中,当由n=k推到n=k+1时,不等式左边应(  )
A.增加了$\frac{1}{2(k+1)}$B.增加了$\frac{1}{2k+1}$+$\frac{1}{2k+2}$
C.增加了$\frac{1}{2k+1}$+$\frac{1}{2k+2}$,但减少了$\frac{1}{k+1}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计(满分150分),其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:

(1)完善如图3该老师绘制男生频率分布直方图的流程图.
(2)根据以上两个直方图完成下面的2×2列联表:
优秀不优秀总计
男生
女生
总计
(3)根据(2)中表格的数据计算,你是否有95%的把握认为学生的数学成绩是否优秀与性别之间有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,C1C=CB=CA=2,AC⊥CB,D,E分别为棱C1C,B1C1的中点.
(1)求二面角B-A1D-A的平面角的余弦值;
(2)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定点F的位置并证明结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两条平行直线l1:$\sqrt{3}$x-y+1=0与l2:$\sqrt{3}$x-y+3=0.
(1)若直线n与l1、l2都垂直,且与坐标轴构成的三角形的面积是2$\sqrt{3}$,求直线n的方程.
(2)若直线m经过点($\sqrt{3}$,4),且被l1、l2所截得的线段长为2,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求证2sinαcosβ=sin(α+β)+sin(α-β).

查看答案和解析>>

同步练习册答案