精英家教网 > 高中数学 > 题目详情
已知B(-5,0),C(5,0)是△ABC的两个顶点,且sinB-sinC=
3
5
sinA,则顶点A的轨迹方程为(  )
A、
x2
9
-
y2
16
=1(x<-3)
B、
x2
9
-
y2
16
=1(x≤-3)
C、
x2
9
-
y2
16
=1
D、
x2
9
-
y2
16
=1(x>3)
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由正弦定理,得|AC|-|AB|=6<10=|BC|,点A的轨迹是以B、C为焦点的双曲线右支,结合双曲线的标准方程用待定系数法,即可求出顶点A的轨迹方程.
解答: 解:∵sinB-sinC=
3
5
sinA,
∴由正弦定理,得|AC|-|BC|=
3
5
a(定值),
∵双曲线的焦距2c=10,|AC|-|BC|=
3
5
a=6,
即|AC|-|AB|=6<10=|BC|,可得A的轨迹是以BC为焦点的双曲线左支
b2=c2-a2=16,可得双曲线的方程为
x2
9
-
y2
16
=1(x<-3)
∴顶点A的轨迹方程为
x2
9
-
y2
16
=1(x<-3)
故选:A.
点评:本题考查双曲线的定义和标准方程,正弦定理的应用,判断点A的轨迹是以B、C为焦点的双曲线一支,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1+x)(2+x)(3+x)…(10+x)的展开式中,含x9项系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在样本的频率分布直方图中,共有5个小矩形,已知中间一个矩形的面积是所有五个矩形面积之和的
1
8
,且中间一组的频数是10,则这个样本容量为(  )
A、80B、50C、10D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一门高射炮射击一次击中目标的概率是0.4,那么至少需要这样的高射炮多少门同时对某一目标射击一次,才能使该目标被击中的概率超过96%(提供的数据:lg2=0.30,lg3=0.48)(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线x2-y2=1的右焦点且斜率是1的直线与双曲线的交点个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x-y=0上,则
sin(
2
+θ)+2cos(π-θ)
sin(
π
2
-θ)-sin(π-θ)
等于(  )
A、-
3
2
B、
3
2
C、0
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=Asin(2x+φ)(A>0,-
π
2
<φ<
π
2
)的部分图象如图所示,则f(0)=(  )
A、-2
B、-1
C、-
1
2
D、-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

观察1,1+3,1+3+5,1+3+5+7的值;猜测1+3+5+…+(2n-1)的结果;用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B两点在河的两岸,一测量者在A的同侧所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,算出A、B两点的距离为
 
m.

查看答案和解析>>

同步练习册答案