精英家教网 > 高中数学 > 题目详情
13.定义在(0,+∞)上的单调函数f(x),?x∈(0,+∞),f[f(x)-lnx]=1,则方程f(x)-f′(x)=1的解所在区间正确的序号是③.
①(0,$\frac{1}{2}}$),②(${\frac{1}{2}$,1)③(1,2)④(2,3)

分析 由设t=f(x)-lnx,则f(x)=lnx+t,又由f(t)=1,求出f(x)=lnx+1,则方程f(x)-f′(x)=1的解可转化成方程lnx-$\frac{1}{x}$=0的解,根据零点存在定理即可判断

解答 解:令f(x)-lnx=t,由函数f(x)单调可知t为正常数,
则f(x)=t+lnx,且f(t)=1,即t+lnt=1,
解:根据题意,对任意的x∈(0,+∞),都有f[f(x)-lnx]=1,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)-lnx为定值,
设t=f(x)-lnx,
则f(x)=lnx+t,
又由f(t)=1,
即lnt+t=1,
解得:t=1,
则f(x)=lnx+1,f′(x)=$\frac{1}{x}$,
∴f(x)-f′(x)=lnx+1-$\frac{1}{x}$=1,
即lnx-$\frac{1}{x}$=0,
则方程f(x)-f′(x)=1的解可转化成方程lnx-$\frac{1}{x}$=0的解,
令h(x)=lnx-$\frac{1}{x}$,
而h(2)=ln2-$\frac{1}{2}$>0,h(1)=ln1-1<0,
∴方程lnx-$\frac{1}{x}$=0的解所在区间为(1,2),
∴方程f(x)-f′(x)=e的解所在区间为(1,2),
故答案为:③.

点评 本题考查了导数的运算和零点存在定理,关键是求出f(x),属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.将53转化为二进制的数结果是110101(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.cos12°sin72°-sin12°cos72°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围;
(3)无论a为何实数值,直线l恒过定点M.求定点M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的定义域为(0,1),则y=f(log${\;}_{\frac{1}{2}}}$(2x-1))的定义域为(  )
A.($\frac{1}{2}$,$\frac{3}{4}$)B.(0,$\frac{3}{4}$)C.($\frac{3}{4}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=x2+(2a-1)x+1-2a在区间(-1,0)及(0,$\frac{1}{2}$)内各有一个零点,则实数a的取值范围是$(\frac{1}{2},\frac{3}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的离心率为$\sqrt{2}$,则双曲线的两渐近线的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则椭圆E的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+ax的函数图象在点(1,f(1))处的切线平行于x轴.
(1)求函数f(x)的极值;
(2)若直线y=kx+b与函数f(x)的图象交于两点A(x1,y1),B(x2,y2)(x1<x2).
证明:$\frac{1-{x}_{2}}{{x}_{2}}$<k<$\frac{1-{x}_{1}}{{x}_{1}}$.

查看答案和解析>>

同步练习册答案