精英家教网 > 高中数学 > 题目详情

已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是(  )

A.3 B.4 C. D.

 

B

【解析】依题意,得(x+1)(2y+1)=9,所以(x+1)+(2y+1)≥2=6,即x+2y≥4.

当且仅当时等号成立,所以x+2y的最小值是4.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:选择题

将图(1)中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图(2)),则在空间四面体ABCD中,AD与BC的位置关系是(  )

A.相交且垂直 B.相交但不垂直

C.异面且垂直 D.异面但不垂直

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:选择题

用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为(  )

A.a,b,c中至少有两个偶数

B.a,b,c中至少有两个偶数或都是奇数

C.a,b,c都是奇数

D.a,b,c都是偶数

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-5合情推理与演绎推理(解析版) 题型:选择题

三段论推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是(  )

A.① B.② C.③ D.①和②

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-4基本不等式(解析版) 题型:解答题

已知A、B、C是平面上任意三点,BC=a,CA=b,AB=c,求y=的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-2一元二次不等式及其解法(解析版) 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.

(1)求证:函数y=f(x)必有两个不同的零点;

(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围;

(3)是否存在这样的实数a,b,c及t使得函数y=f(x)在[-2,1]上的值域为[-6,12]?若存在,求出t的值及函数y=f(x)的解析式;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-2一元二次不等式及其解法(解析版) 题型:填空题

已知函数f(x)=x2+ax-1在区间[0,3]上有最小值-2,则实数a的值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-1不等关系与不等式(解析版) 题型:填空题

已知实数a满足ab2>a>ab,则实数b的取值范围为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-3等比数列及其前n项和(解析版) 题型:填空题

已知{an}是等比数列,a2=2,a5=,则Sn=a1+a2+…+an(n∈N*)的取值范围是________.

 

查看答案和解析>>

同步练习册答案