精英家教网 > 高中数学 > 题目详情
6.求函数y=1-2sin(x+$\frac{π}{6}$)的最大值和最小值及相应的x值.

分析 根据正弦函数的单调性和最值解答.

解答 解:∵-1≤sin(x+$\frac{π}{6}$)≤1,
∴当sin(x+$\frac{π}{6}$)=-1时,y取得最大值1-2×(-1)=3.
此时x+$\frac{π}{6}$=-$\frac{π}{2}+2kπ$,即x=-$\frac{2π}{3}$+2kπ,k∈Z.
当sin(x+$\frac{π}{6}$)=1时,y取得最小值1-2×1=-1.
此时x+$\frac{π}{6}$=$\frac{π}{2}+2kπ$,即x=$\frac{π}{3}$+2kπ,k∈Z.

点评 本题考查了正弦函数的图象与性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.某微信群中甲、乙、丙、丁、卯五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中有两个2元,两个3元(红包中金额相同视为相同的红包),则甲乙两人都抢到红包的情况有(  )
A.35种B.24种C.18种D.9种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)=(x-a)(x-b).
(1)求函数f(x)的导函数.
(2)若a=1,b=-4,求垂直于直线2x-6y+1=0并且与曲线y=xf(x)+4x-5相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求(1-x)6(1+x)4展开式中x3的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A={(x,y)|3x-2y=11},B={(x,y)|2x+3y=16},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(x+y)($\frac{1}{x}$+y)5的展开式中,含x-2y2的项的系数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\frac{7}{{A}_{x+1}^{2}}$=$\frac{2}{{A}_{x}^{2}}$+$\frac{2}{{A}_{x-1}^{2}}$,求${A}_{x}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,直线l:y=x+2与以原点O为圆心,椭圆的短轴长为直径的圆O相切.
(1)求椭圆C的方程;
(2)设椭圆C与直线y=kx(k>0)在第一象限的交点为A.
①设B($\sqrt{2}$,1),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\sqrt{6}$,求k的值;
②若A与D关于x轴对称,求△AOD的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.平面区域A={(x,y)|x2+y2<4,x,y∈R},B={(x,y)||x|+|y|≤3,x,y∈R).在A内随机取一点,则该点取自B的概率为$\frac{2π}{9}$.

查看答案和解析>>

同步练习册答案